13 results on '"Whyte L"'
Search Results
2. OC96 A tertiary centre review of outcomes of paediatric patients with gastrointestinal dystonia associated with neurodisability
- Author
-
Atta, H, primary, Elesnawy, K, additional, Effandie, E, additional, and Whyte, L, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Fecal DNA metabarcoding shows credible short-term prey detections and explains variation in the gut microbiome of two polar bear subpopulations
- Author
-
Franz, M, primary, Whyte, L, additional, Atwood, TC, additional, Menning, D, additional, Sonsthagen, SA, additional, Talbot, SL, additional, Laidre, KL, additional, Gonzalez, E, additional, and McKinney, MA, additional
- Published
- 2023
- Full Text
- View/download PDF
4. Hämatopoietische Stammzellen – Vehikel für eine antiangiogene Therapie von Hirntumoren?
- Author
-
Weiler, M, Whyte, L, and Wick, W
- Published
- 2024
- Full Text
- View/download PDF
5. Bioluminescent Pseudomonas aeruginosa and Escherichia coli for whole-cell screening of antibacterial and adjuvant compounds.
- Author
-
Farkas E, McKay GA, Hu LT, Nekouei M, Ho P, Moreira W, Chan CC, Dam LC, Auclair K, Gruenheid S, Whyte L, Dedon P, and Nguyen D
- Subjects
- High-Throughput Screening Assays methods, Luminescent Measurements methods, Drug Evaluation, Preclinical methods, Drug Discovery methods, Pseudomonas aeruginosa drug effects, Escherichia coli drug effects, Anti-Bacterial Agents pharmacology, Microbial Sensitivity Tests methods
- Abstract
Continued efforts to discover new antibacterial molecules are critical to achieve a robust pre-clinical pipeline for new antibiotics. Screening of compound or natural product extract libraries remains a widespread approach and can benefit from the development of whole cell assays that are robust, simple and versatile, and allow for high throughput testing of antibacterial activity. In this study, we created and validated two bioluminescent reporter strains for high-throughput screening, one in Pseudomonas aeruginosa, and another in a hyperporinated and efflux-deficient Escherichia coli. We show that the bioluminescent strains have a large dynamic range that closely correlates with cell viability and is superior to conventional optical density (OD
600 ) measurements, can detect dose-dependent antibacterial activity and be used for different drug discovery applications. We evaluated the assays' performance characteristics (signal to background ratio, signal window, Z' robust) and demonstrated their potential utility for antibiotic drug discovery in two examples. The P. aeruginosa bioluminescent reporter was used in a pilot screen of 960 repurposed compound libraries to identify adjuvants that potentiate the fluoroquinolone antibiotic ofloxacin. The E. coli bioluminescent reporter was used to test the antibacterial activity of bioactive bacterial supernatants and assist with bioassay-guided fractionation of the crude extracts., Competing Interests: Declarations. Competing interests: The authors declare no competing interests., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
6. Increased neuronal expression of the early endosomal adaptor APPL1 leads to endosomal and synaptic dysfunction with cholinergic neurodegeneration.
- Author
-
Jiang Y, Sachdeva K, Goulbourne CN, Berg MJ, Peddy J, Stavrides PH, Pensalfini A, Pawlik M, Whyte L, Balapal BS, Shivakumar S, Bleiwas C, Smiley JF, Mathews PM, and Nixon RA
- Abstract
Dysfunction of the endolysosomal system within neurons is a prominent feature of Alzheimer's disease (AD) pathology. Multiple AD-risk factors are known to cause hyper-activity of the early-endosome small GTPase rab5, resulting in neuronal endosomal pathway disruption. APPL1, an important rab5 effector protein, is an interface between endosomal and neuronal function through a rab5-activating interaction with the BACE1-generated C-terminal fragment (βCTF or C99) of the amyloid precursor protein (APP), a pathogenic APP fragment generated within endolysosomal compartments. To better understand the role of APPL1 in the AD endosomal phenotype, we generated a transgenic mouse model over-expressing human APPL1 within neurons (Thy1-APPL1 mice). Consistent with the important endosomal regulatory role of APPL1, Thy1-APPL1 mice have enlarged neuronal early endosomes and increased synaptic endocytosis due to increased rab5 activation. We additionally demonstrate pathological consequences of APPL1 overexpression, including functional changes in hippocampal long-term potentiation (LTP) and long-term depression (LTD), as well as degeneration of the large projection cholinergic neurons of the basal forebrain and impairment of hippocampal-dependent memory. Our findings show that increased neuronal APPL1 levels lead to a cascade of pathological effects within neurons, including early endosomal alterations, synaptic dysfunction, and neurodegeneration. Multiple risk factors and molecular regulators, including APPL1 activity, are known to contribute to the endosomal dysregulation seen in the early stages of AD, and these findings further highlight the shared pathobiology and consequences to a neuron of early endosomal pathway disruption., Significance Statement: Dysfunction in the endolysosomal system within neurons is a key feature of Alzheimer's disease (AD). Multiple AD risk factors lead to hyperactivity of the early-endosome GTPase rab5, disrupting neuronal pathways including the cholinergic circuits involved early in memory decline. APPL1, a crucial rab5 effector, connects endosomal and neuronal functions through its interaction with a specific amyloid precursor protein (APP) fragment generated within endosomes. To understand APPL1's role, a transgenic mouse model over-expressing human APPL1 in neurons (Thy1-APPL1 mice) was developed. These mice show enlarged early endosomes and increased synaptic endocytosis due to rab5 activation, resulting in impaired hippocampal long-term potentiation and depression, the degeneration of basal forebrain cholinergic neurons, and memory deficits, highlighting a pathological cascade mediated through APPL1 at the early endosome.
- Published
- 2024
- Full Text
- View/download PDF
7. The COSPAR planetary protection policy for missions to Icy Worlds: A review of history, current scientific knowledge, and future directions.
- Author
-
Doran PT, Hayes A, Grasset O, Coustenis A, Prieto-Ballesteros O, Hedman N, Al Shehhi O, Ammannito E, Fujimoto M, Groen F, Moores JE, Mustin C, Olsson-Francis K, Peng J, Praveenkumar K, Rettberg P, Sinibaldi S, Ilyin V, Raulin F, Suzuki Y, Xu K, Whyte LG, Zaitsev M, Buffo J, Kminek G, and Schmidt B
- Subjects
- Solar System, Space Flight, Spacecraft, History, 20th Century, Exobiology, Extraterrestrial Environment, Planets
- Abstract
Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection. This paper summarizes the results of those discussions, reviewing the current knowledge and the history of planetary protection considerations for Icy Worlds as well as suggesting ways forward. Based on those discussions, we therefore suggest to (1) Establish a new definition for Icy Worlds for Planetary Protection that captures the outer Solar System moons and dwarf planets like Pluto, but excludes more primitive bodies such as comets, centaurs, and asteroids: Icy Worlds in our Solar System are defined as all bodies with an outermost layer that is believed to be greater than 50 % water ice by volume and have enough mass to assume a nearly round shape. (2) Establish indices for the lower limits of Earth life with regards to water activity (LLAw) and temperature (LLT) and apply them into all areas of the COSPAR Planetary Protection Policy. These values are currently set at 0.5 and -28 °C and were originally established for defining Mars Special Regions; (3) Establish LLT as a parameter to assign categorization for Icy Worlds missions. The suggested categorization will have a 1000-year period of biological exploration, to be applied to all Icy Worlds and not just Europa and Enceladus as is currently the case. (4) Have all missions consider the possibility of impact. Transient thermal anomalies caused by impact would be acceptable so long as there is less than 10
-4 probability of a single microbe reaching deeper environments where temperature is >LLT in the period of biological exploration. (5) Restructure or remove Category II* from the policy as it becomes largely redundant with this new approach, (6) Establish that any sample return from an Icy World should be Category V restricted Earth return., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)- Published
- 2024
- Full Text
- View/download PDF
8. Influence of heavy Canadian crude oil on pristine freshwater boreal lake ecosystems in an experimental oil spill.
- Author
-
Kharey GS, Palace V, Whyte L, and Greer CW
- Subjects
- Canada, Biodegradation, Environmental, Geologic Sediments microbiology, Microbiota drug effects, Bacteria genetics, Bacteria drug effects, Bacteria metabolism, Bacteria classification, Fresh Water microbiology, Petroleum metabolism, Petroleum Pollution, Lakes microbiology, Polycyclic Aromatic Hydrocarbons metabolism, Water Pollutants, Chemical metabolism, Ecosystem
- Abstract
The overall impact of a crude oil spill into a pristine freshwater environment in Canada is largely unknown. To evaluate the impact on the native microbial community, a large-scale in situ model experimental spill was conducted to assess the potential role of the natural community to attenuate hydrocarbons. A small volume of conventional heavy crude oil (CHV) was introduced within contained mesocosm enclosures deployed on the shoreline of a freshwater lake. The oil was left to interact with the shoreline for 72 h and then free-floating oil was recovered using common oil spill response methods (i.e. freshwater flushing and capture on oleophilic absorptive media). Residual polycyclic aromatic hydrocarbon (PAH) concentrations returned to near preoiling concentrations within 2 months, while the microbial community composition across the water, soil, and sediment matrices of the enclosed oligotrophic freshwater ecosystems did not shift significantly over this period. Metagenomic analysis revealed key polycyclic aromatic and alkane degradation mechanisms also did not change in their relative abundance over the monitoring period. These trends suggest that for small spills (<2 l of oil per 15 m2 of surface freshwater), physical oil recovery reduces polycyclic aromatic hydrocarbon concentrations to levels tolerated by the native microbial community. Additionally, the native microbial community present in the monitored pristine freshwater ecosystem possesses the appropriate hydrocarbon degradation mechanisms without prior challenge by hydrocarbon substrates. This study corroborated trends found previously (Kharey et al. 2024) toward freshwater hydrocarbon degradation in an environmentally relevant scale and conditions on the tolerance of residual hydrocarbons in situ., (© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2024
- Full Text
- View/download PDF
9. Native freshwater lake microbial community response to an in situ experimental dilbit spill.
- Author
-
Kharey GS, Palace V, Whyte L, and Greer CW
- Subjects
- Canada, Microbiota, Water Pollutants, Chemical metabolism, Bacteria genetics, Bacteria metabolism, Bacteria classification, Polycyclic Aromatic Hydrocarbons metabolism, Geologic Sediments microbiology, Fresh Water microbiology, Metagenomics, Lakes microbiology, Biodegradation, Environmental, Hydrocarbons metabolism, Petroleum Pollution
- Abstract
With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated. We found that the native microbial community did not undergo any significant shifts in composition after exposure to dilbit or the ensuing remediation treatments. Regardless of the treatment, sample type (soil, sediment, or water), or type of associated shoreline, the community remained relatively consistent over a 3-month monitoring period. Following this, metagenomic analysis of polycyclic aromatic and alkane hydrocarbon degradation mechanisms also showed that while many key genes identified in PAH and alkane biodegradation were present, their abundance did not change significantly over the course of the experiment. These results showed that the native microbial community present in a pristine freshwater lake has the prerequisite mechanisms for hydrocarbon degradation in place, and combined with standard remediation practices in use in Canada, has the genetic potential and resilience to potentially undertake bioremediation., (© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2024
- Full Text
- View/download PDF
10. Long term outcomes in children with trichohepatoenteric syndrome.
- Author
-
Lee KY, Bremner R, Hartley J, Protheroe S, Haller W, Johnson T, and Whyte L
- Subjects
- Child, Female, Humans, Male, Diarrhea genetics, Diarrhea diagnosis, Diarrhea, Infantile genetics, Diarrhea, Infantile therapy, Diarrhea, Infantile diagnosis, Facies, Fetal Growth Retardation, Hair Diseases genetics, Inflammatory Bowel Diseases pathology
- Abstract
Trichohepatoenteric syndrome (THES) is a rare autosomal recessive disorder caused by mutations in either TTC37 or SKIV2L, usually leading to congenital diarrhea as part of a multisystem disease. Here, we report on the natural history of the disease for the largest UK cohort of patients with THES from 1996 to 2020. We systematically reviewed the clinical records and pathological specimens of patients diagnosed with THES managed in a single tertiary pediatric gastroenterology unit. Between 1996 and 2020, 13 patients (7 female and 6 male) were diagnosed with THES either by mutation analysis or by clinical phenotype. Two patients died from complications of infection. All patients received parenteral nutrition (PN) of which six patients were weaned off PN. All patients had gastrointestinal tract inflammation on endoscopy. Almost half of the cohort were diagnosed with monogenic inflammatory bowel disease (IBD) by the age of 11 years, confirmed by endoscopic and histological findings. Protracted diarrhea causing intestinal failure improves with time in all patients with THES, but monogenic IBD develops in later childhood that is refractory to conventional IBD treatments. Respiratory issues contribute to significant morbidity and mortality, and good respiratory care is crucial to prevent comorbidity., (© 2023 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
11. Biodegradation potential of residue generated during the in-situ burning of oil in the marine environment.
- Author
-
Pyke R, Fortin N, Wasserscheid J, Tremblay J, Schreiber L, Levesque MJ, Messina-Pacheco S, Whyte L, Wang F, Lee K, Cooper D, and Greer CW
- Subjects
- RNA, Ribosomal, 16S genetics, Hydrocarbons metabolism, Seawater microbiology, Biodegradation, Environmental, Polycyclic Aromatic Hydrocarbons analysis, Petroleum Pollution analysis, Petroleum metabolism
- Abstract
The biodegradability of residues derived from in-situ burning, an oil spill response strategy which involves burning an oil slick on the sea surface, has not yet been fully studied. With a growing risk of oil spills, the fate of the persistent burn residue containing potentially toxic substances must be better understood. Microcosms were used to study the microbial community response and potential biodegradability of in-situ burn residues generated from Ultra Low Sulphur (ULS) marine diesel. Microcosm studies were conducted using residues originating from the burning of unweathered and weathered diesel, with the addition of a fertilizer and a dispersant. Burn residues were incubated for 6 weeks at 7 °C in natural seawater with continual agitation in the dark. Samples were subsequently sacrificed for chemistry as well as 16S rRNA gene amplicon and shotgun metagenomic sequencing. Chemistry analyses revealed a reduction in hydrocarbon concentrations. Medium chain-length n-alkanes (nC
16 -nC24 ) decreased by 8% in unweathered burn residue microcosms and up to 26% in weathered burn residue microcosms. A significant decrease in polycyclic aromatic hydrocarbon (PAH) concentrations was observed only for naphthalene, fluorene and their alkylated homologs, in the microcosms amended with residue produced from burning weathered diesel. Decreases of 2-24%, were identified depending on the compound. Microcosms amended with burn residues had distinct microbial communities marked by an increase in relative abundance of putative hydrocarbon degraders as well as an increase of known hydrocarbon-degradation genes. These novel results suggest that if in-situ burning is performed on ULS marine diesel, some of the indigenous bacteria would respond to the newly available carbon source and some of the residual compounds would be biodegraded. Future studies involving longer incubation periods could give a better understanding of the fate of burn residues by shedding light on the potential biodegradability of the more recalcitrant residual compounds., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier B.V.)- Published
- 2023
- Full Text
- View/download PDF
12. The first mitotic division of human embryos is highly error prone.
- Author
-
Currie CE, Ford E, Benham Whyte L, Taylor DM, Mihalas BP, Erent M, Marston AL, Hartshorne GM, and McAinsh AD
- Subjects
- Humans, Mosaicism, Metaphase, Karyotype, Blastocyst, Aneuploidy, Embryo, Mammalian, Chromosome Segregation
- Abstract
Human beings are made of ~50 trillion cells which arise from serial mitotic divisions of a single cell - the fertilised egg. Remarkably, the early human embryo is often chromosomally abnormal, and many are mosaic, with the karyotype differing from one cell to another. Mosaicism presumably arises from chromosome segregation errors during the early mitotic divisions, although these events have never been visualised in living human embryos. Here, we establish live cell imaging of chromosome segregation using normally fertilised embryos from an egg-share-to-research programme, as well as embryos deselected during fertility treatment. We reveal that the first mitotic division has an extended prometaphase/metaphase and exhibits phenotypes that can cause nondisjunction. These included multipolar chromosome segregations and lagging chromosomes that lead to formation of micronuclei. Analysis of nuclear number and size provides evidence of equivalent phenotypes in 2-cell human embryos that gave rise to live births. Together this shows that errors in the first mitotic division can be tolerated in human embryos and uncovers cell biological events that contribute to preimplantation mosaicism., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
13. Hydrocarbon bioremediation on Arctic shorelines: Historic perspective and roadway to the future.
- Author
-
Góngora E, Chen YJ, Ellis M, Okshevsky M, and Whyte L
- Subjects
- Arctic Regions, Biodegradation, Environmental, Canada, Hydrocarbons metabolism, Ice Cover
- Abstract
Climate change has become one of the greatest concerns of the past few decades. In particular, global warming is a growing threat to the Canadian high Arctic and other polar regions. By the middle of this century, an increase in the annual mean temperature of 1.8 °C-2.7 °C for the Canadian North is predicted. Rising temperatures lead to a significant decrease of the sea ice area covered in the Northwest Passage. As a consequence, a surge of maritime activity in that region increases the risk of hydrocarbon pollution due to accidental fuel spills. In this review, we focus on bioremediation approaches on Arctic shorelines. We summarize historical experimental spill studies conducted at Svalbard, Baffin Island, and the Kerguelen Archipelago, and review contemporary studies that used modern omics techniques in various environments. We discuss how omics approaches can facilitate our understanding of Arctic shoreline bioremediation and identify promising research areas that should be further explored. We conclude that specific environmental conditions strongly alter bioremediation outcomes in Arctic environments and future studies must therefore focus on correlating these diverse parameters with the efficacy of hydrocarbon biodegradation., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.