1. Spatiotemporal Trajectory Tracking Method for Vehicles Incorporating Lead-Lag Judgement
- Author
-
Li, Yuan, Dong, Xiang, Li, Tao, Hao, Junfeng, Xu, Xiaoxue, Ullaha, Sana, Cai, Yincai, Wu, Peng, and Peng, Ting
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
In the domain of intelligent transportation systems, especially within the context of autonomous vehicle control, the preemptive holistic collaborative system has been presented as a promising solution to bring a remarkable enhancement in traffic efficiency and a substantial reduction in the accident rate, demonstrating a great potential of development. In order to ensure this system operates as intended, accurate tracking of the spatiotemporal trajectory is of crucial significance. Moreover, minimizing the tracking error is a necessary step in this process. To this end, a novel lead-lag judgment mechanism is proposed. This mechanism precisely quantifies the longitudinal positional deviation between the vehicle and the target trajectory over time, then the deviation is corrected with a real - time acceleration compensation strategy, as a result, the accuracy and reliability of trajectory tracking are significantly enhanced. Real - vehicle experiments were conducted in a dedicated test field to validate the feasibility of this innovative approach empirically. Subsequently, the obtained tracking data was subsequent processed using the lead-lag judgment mechanism. In this step, we carefully analyzed the spatiotemporal error patterns between the vehicle and the target trajectory under different alignments and speeds. Finally, using real highway speed and alignment data, we conducted comprehensive spatiotemporal trajectory tracking simulations. Through experiments and simulations, tracking errors maintained in an acceptable range and reasonable spatiotemporal distance is given during the preemptive merging process on highway ramps. Overall, this study offers valuable insights for highway ramp emerging safety. Future work can expand on these findings.
- Published
- 2025