19 results on '"Zych, E."'
Search Results
2. Effects of chemically induced cationic disturbance on Mn4+ luminescence in double perovskites - temperature and pressure experimental and computational studies
- Author
-
Jedoń, J., Lazarowska, A., Leśniewski, T., Mahlik, S., Brik, M.G., Piasecki, M., Srivastava, A.M., Beers, W.W., and Zych, E.
- Published
- 2023
- Full Text
- View/download PDF
3. Laparoscopic embryo transfer in pigs - comparison of different variants and efficiencies of the method
- Author
-
Wieczorek, J., Stodolak-Zych, E., Okoń, Krzysztof, Koseniuk, J., Bryła, M., Jura, J., Poniedziałek-Kempny, K., Rajska, I., Sobol, K., Kotula, Balak, and Chmurska-Gasowska, M.
- Published
- 2023
4. NONWOVEN CARBON FIBERS WITH NANOMETRIC METALLIC LAYERS AS A TOOL TO MONITOR REGENERATIVE PROCESSES.
- Author
-
STODOLAK-ZYCH, E., KUDZIN, M., KORNAUS, K., GUBERNAT, M., KANIUK, E., and BOGUN, M.
- Subjects
- *
ENERGY dispersive X-ray spectroscopy , *IRON , *MAGNETRON sputtering , *SCANNING electron microscopes , *REGENERATION (Biology) , *CARBON fibers - Abstract
Still unsolved is the problem of monitoring the tissue regeneration with the use of implants (substrates) in in vivo conditions. The multitude of implant materials combined with their specific immanent often limit standard diagnostic methods, i.e. X-rey or computer tomography (CT). This is particularly difficult in therapies using polymeric high-resistance substrates for tissue engineering. The aim of this study was to fabricate a non-woven carbon fiber composed of carbon fibers (CF) which were then subjected to a surface modification by magnetron sputtering. A layer of iron (Fe) was applied under inert conditions (argon) for different time periods (2-10 min). It was shown that already after 2-4 minutes of iron sputtering, the voxel surface (CF_Fe2', CF_Fe4') was covered with a heterogeneous iron layer observed by scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDS). The longer the modification time, the more uniform the layer on the fiber surface becomes. This can be seen by the change in the wettability of the nonwoven surface which decreases from 131° for CF_Fe2 to 120° for CF_Fe10. The fibers do not change their geometry or dimensions (~11.5 um). The determination of pore size distribution by adsorption and desorption techniques (BJH) and specific surface area by nitrogen adsorption method (BET) have shown that the high specific surface area for the CF_Fe2' fibers decreases by 10% with the increasing iron sputtering time. All the studied CF_Fe fibers show good biocompatibility with osteoblastlike cells MG-63 cells after both 3 and 7 days of culture. Osteoblasts adhere to the fiber surface and show correct morphology. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. PAN-BASED CARBON FIBERS DEPOSITION ON NiTi SURFACE.
- Author
-
GORYCZKA, T., SZARANIEC, B., STODOLAK-ZYCH, E., and KLUSKA, S.
- Subjects
PAN-based carbon fibers ,NICKEL-titanium alloys ,SCANNING electron microscopes ,COATING processes - Abstract
The main objective of the work was to create a layer of carbon nanofibre on the surface of the NiTi shape memory alloy. The coating process was carried out in three stages. First, polyacrylonitrile was deposited by electrospinning. Then it was stabilized at temperatures up to 250°C. The last stage was the carbonization performed below 1000°C. The microstructure of the obtained coatings was observed using a scanning electron microscope. The X-ray diffraction techniques were applied to analyze the coating structure. After the polyacrylonitrile deposition, the fibers had an average diameter of about 280 nm, and the final fibers were almost twice as tiny. The applied steps also changed the phase and crystalline state of the fibers, finally leading to the formation of amorphous-nanocrystalline graphite. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Investigation of archaeological amphorae from the Egadi battles
- Author
-
Francesco Armetta, Veronica Ciaramitaro, Małgorzata Sójka, Maria Luisa Saladino, Eugeniusz Zych, Armetta F., Ciaramitaro V., Sojka M., Saladino M.L., and Zych E.
- Subjects
History ,amphorae ,Multianalytical approach ,Canaletto Program ,underwater site ,Egadi battle ,thermoluminescence ,Computer Science Applications ,Education - Abstract
Archaeological ceramics are considered one of the most important sources of both technological and chronological information. Here, the investigation of some archaeological underwater amphorae from the Egadi’s Battle, that decided the end of the First Punic War (241 B.C.), is reported. X-ray Diffraction (XRD), X-ray Fluorescence (XRF), petrography, and Thermoluminescence (TL) were used to determine the composition of the amphorae and to evaluate the compatibly of their age with the above Battle. Considering the historical importance of the act and the well-defined historical collocation these amphorae represent an interesting archaeometric case study.
- Published
- 2022
- Full Text
- View/download PDF
7. Neomycin Intercalation in Montmorillonite: The Role of Ion Exchange Capacity and Process Conditions.
- Author
-
Rapacz-Kmita A, Gajek M, Dudek M, Kurpanik R, Kluska S, and Stodolak-Zych E
- Abstract
The study examined the possibility of intercalation of montmorillonite with neomycin in an aqueous drug solution and the factors influencing the effectiveness of this process, such as the ion exchange capacity and process conditions, including the time and temperature of incubation with the drug. X-ray diffractometry (XRD), infrared spectroscopy (FTIR), thermal analysis (DSC/TG), and Zeta potential measurement were used to confirm drug intercalation as well as to investigate the nature of clay-drug interactions. The obtained conjugates with the most favorable physicochemical properties were also tested for antibacterial response against Gram-negative bacteria ( Escherichia coli ) to confirm that the bactericidal properties of neomycin were retained after intercalation and UV-VIS spectrophotometry was used to examine the kinetics of drug release from the carrier. The results of the conducted research clearly indicate the successful intercalation of neomycin in montmorillonite and indicate the influence of process parameters on the properties of not only the conjugates themselves but also the properties of the intercalated drug, particularly its bactericidal activity. Ultimately, a temperature of 50 °C was found to be optimal for effective drug intercalation and the conjugates obtained within 2 h showed the highest antibacterial activity, indicating the highest potential of the thus-obtained montmorillonite conjugates as neomycin carriers.
- Published
- 2024
- Full Text
- View/download PDF
8. Dialysis nanocomposite membranes based on carbon nanoforms inhibiting blood plasma protein adsorption.
- Author
-
Wójtowicz D, Kurpanik R, Nguyen Ngoc D, Wessley-Szponder J, and Stodolak-Zych E
- Subjects
- Adsorption, Polymers chemistry, Animals, Serum Albumin, Bovine chemistry, Surface Properties, Chickens, Hydrophobic and Hydrophilic Interactions, Nanocomposites chemistry, Membranes, Artificial, Blood Proteins, Nanotubes, Carbon chemistry, Graphite chemistry, Renal Dialysis instrumentation, Sulfones chemistry
- Abstract
Background: Protein adsorption on medical devices in contact with blood is a significant issue during renal replacement therapy. Main forces determining fouling are the electrostatic interactions between membrane and charged protein, but the dialysis membrane surface charges can be adjusted by modifying the polymer matrix to decrease the blood plasma protein adsorption., Methods: In this study, polysulfone membranes (PSU) were modified by incorporation of carbon nanoparticles such as: multiwall carbon nanotubes (2 wt.% MWCNT), graphene oxide (1 wt.% GO), and graphite (5 wt.% GR) during manufacturing process (nonsolvent-induced phase separation, NIPS). The PSU flat sheet membrane was the reference sample., Results: Observed morphology of nanocomposite membranes was similar (SEM imaging); all of them had finger-like pore structure with unimodal distribution of pore size and similar skin-to-support ratio (1:3). The carbon nanoadditives also influenced the surface wettability: hydrophobicity and surface free energy of membranes increased (polar components of energy were reduced, while the dispersive components were increased)., Conclusion: The surface charge of nanocomposite membranes increased, when the polymer matrix has been modified with CNT or GR. This significantly affects the adsorption of proteins such as chicken (CSA) and bovine serum albumin (BSA) and reduces blood clotting on the membrane., Competing Interests: Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF
9. On the Feasibility of an LCD-Based Real-Time Converter for Ionizing Radiation Imaging.
- Author
-
Januszko A, Zych E, Piecek W, Pellowski W, Bogdanowicz KA, and Iwan A
- Abstract
Here we present the cascade converter (CC), which provides real-time imaging of ionizing radiation (IoR) distribution. It was designed and manufactured with the simplest architecture, utilizing liquid crystal display (LCD) technology. Based on two merged substrates with transparent electrodes, armed with functional layers, with the cell filled with nematic liquid crystal, a display-like, IoR-stimulated CC was achieved. The CC comprises low-absorbing polymer substrates (made of polyethylene terephthalate-PET) armed with a transparent ITO electrode covered with a thin semipermeable membrane of polymer (biphenylperfluorocyclobutyl: BP-PFCB) doped with functional nanoparticles (NPs) of Lu
2 O3 :Eu. This stack was covered with a photoconductive layer of α-Se and finally with a thin polyimide (PI) layer for liquid crystal alignment. The opposite substrate was made of LCD-type glass with ITO and polyimide aligning layers. Both substrates form a cell with a twisted structure of nematic liquid crystal (TN) driven with an effective electric field Eeff. An effective electric field driving TN structure is generated with a sum of (1) a bias voltage VBIAS applied to ITO transparent electrodes and (2) the photogenerated additional voltage VXray induced between ITO and α-Se layers with a NPs-doped BP-PFCB polymer layer in-between. The IoR (here, X-ray) conversion into real imaging of the IoR distribution was achieved in the following stages: (1) conversion of IoR distribution into non-ionizing red light emitted with functional NPs, (2) transformation of red light into an electric charge distributed in a layer of the photoconductive α-Se, which is what results in the generation of distributed voltage VXray, and (3) a voltage-mediated, distributed switching of the TN structure observed with the naked eye. The presented imaging device is characterized by a simple structure and a simple manufacturing process, with the potential for use as a portable element of IoR detection and as a dosimeter.- Published
- 2024
- Full Text
- View/download PDF
10. Micro-Inclusion Engineering via Sc Incompatibility for Luminescence and Photoconversion Control in Ce 3+ -Doped Tb 3 Al 5-x Sc x O 12 Garnet.
- Author
-
Bartosiewicz K, Tomala R, Szymański D, Albini B, Zeler J, Yoshino M, Horiai T, Socha P, Kurosawa S, Kamada K, Galinetto P, Zych E, and Yoshikawa A
- Abstract
Aluminum garnets display exceptional adaptability in incorporating mismatching elements, thereby facilitating the synthesis of novel materials with tailored properties. This study explored Ce
3+ -doped Tb3 Al5-x Scx O12 crystals (where x ranges from 0.5 to 3.0), revealing a novel approach to control luminescence and photoconversion through atomic size mismatch engineering. Raman spectroscopy confirmed the coexistence of garnet and perovskite phases, with Sc substitution significantly influencing the garnet lattice and induced A1g mode softening up to Sc concentration x = 2.0. The Sc atoms controlled sub-eutectic inclusion formation, creating efficient light scattering centers and unveiling a compositional threshold for octahedral site saturation. This modulation enabled the control of energy transfer dynamics between Ce3+ and Tb3+ ions, enhancing luminescence and mitigating quenching. The Sc admixing process regulated luminous efficacy (LE), color rendering index (CRI), and correlated color temperature (CCT), with adjustments in CRI from 68 to 84 and CCT from 3545 K to 12,958 K. The Ce3+ -doped Tb3 Al5-x Scx O12 crystal (where x = 2.0) achieved the highest LE of 114.6 lm/W and emitted light at a CCT of 4942 K, similar to daylight white. This approach enables the design and development of functional materials with tailored optical properties applicable to lighting technology, persistent phosphors, scintillators, and storage phosphors.- Published
- 2024
- Full Text
- View/download PDF
11. Multiscale characterization of electrospun non-wovens for corneal regeneration: Impact of microstructure on mechanical, optical and biological properties.
- Author
-
Kurpanik R, Gajek M, Gryń K, Jeleń P, Ścisłowska-Czarnecka A, and Stodolak-Zych E
- Subjects
- Cell Line, Cell Survival, Water, Cornea, Cytoskeleton
- Abstract
The multiscale approach in designing substrates for regenerative medicine endows them with beneficial properties determining their performance in the body. Substrates for corneal regeneration should reveal the proper transparency, mechanical properties and microstructure to maintain the functionality of the regenerated tissue. In our study, series of non-wovens with different fibres orientation (random (R), aligned (A)), topography (shish-kebab (KK), core-shell (CS)) and thickness were fabricated via electrospinning. The samples were assessed for mechanical (static tensile test) and optical properties (spectroscopy UV-Vis). The research evaluated the impact of different microstructures on the viability and morphology of three cell lines (Hs 680, HaCaT and RAW 264.7). The results showed how the fibres arrangement influenced mechanical behaviour of the non-wovens. The randomly oriented fibres were more elongated (up to 50 mm) and had a lower maximum tensile force (up to 0.46 N). In turn, the aligned fibres were characterized by lower elongation (up to 19 mm) and higher force (up to 1.45 N). The conducted transparency tests showed the relation between thickness (of the non-woven and fibres) and morphology of the substrate and light transmission. To simulate the in vivo conditions, prior to the light transmission studies, samples were immersed in water. All the samples exhibited high transparency after immersion in water (>80%). The impact of various morphologies was observed in the in vitro studies. All the samples proved high cells viability. Moreover, the substrate morphology had a significant impact on the orientation and arrangement of the fibroblast cytoskeleton. The aligned fibres were oriented in exactly the same direction. The conducted research proved that, by altering the non-wovens microstructure, the properties can be adjusted so as to induce the desirable cellular reaction. This indicates the high potential of electrospun fibres in terms of modulating the corneal cell behaviour in response to the implanted substrate., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
12. Frontiers of Deep-Red Emission of Mn 4+ Ions with Ruddlesden-Popper Perovskites.
- Author
-
Piotrowski WM, Bolek P, Brik MG, Zych E, and Marciniak L
- Abstract
It is well-known that the chemical composition of the host material significantly affects the spectroscopic performance of transition metal ions. However, it is worth noting that also the structure and symmetry of crystallographic sites play significant roles in transition metal ion luminescence. In this study, we demonstrate three perovskite structures of strontium titanate forming so-called Ruddlesden-Popper phases doped with Mn
4+ ions. The observed reduction in the average Ti4+ -O2- distance in the series SrTiO3 -Sr2 TiO4 -Sr3 Ti2 O7 allowed for a record-breaking shift in the spectral position of Mn4+ emission band with a maximum of around 734 nm and led to an improvement of the already impressive thermometric performance of SrTiO3 :Mn4+ in ratiometric and lifetime-based approaches. This research encourages a further search for structures that, with the help of the developed correlations between structural and optical properties, could lead to the discovery of phosphors beyond the limits established so far.- Published
- 2023
- Full Text
- View/download PDF
13. Correlation between porosity and physicochemical and biological properties of electrospinning PLA/PVA membranes for skin regeneration.
- Author
-
Kaniuk E, Lechowska-Liszka A, Gajek M, Nikodem A, Ścisłowska-Czarnecka A, Rapacz-Kmita A, and Stodolak-Zych E
- Subjects
- Humans, Porosity, Regeneration, Polyvinyl Alcohol chemistry, Polyesters
- Abstract
Electrospinning is an increasingly popular technique for obtaining scaffolds for skin regeneration. However, electrospun scaffolds may also have some disadvantages, as the densely packed fibers in the scaffold structure can limit the penetration of skin cells into the inner part of the material. Such a dense arrangement of fibers can cause the cells to treat the 3D material as 2D one, and thus cause them to accumulate only on the upper surface. In this study, bi-polymer scaffolds made of polylactide (PLA) and polyvinyl alcohol (PVA) electrospun in a sequential or a concurrent system were investigated in a different PLA:PVA ratio (2:1 and 1:1). The properties of six types of model materials were investigated and compared i.e.; the initial materials electrospun by the sequential (PLA/PVA, 2PLA/PVA) and the concurrent system (PLA||PVA) and the same materials with removed PVA fibers (PLA/rPVA, 2PLA/rPVA, PLA||rPVA). The fiber models were intended to increase the porosity and coherent structure parameters of the scaffolds. The applied treatment involving the removal of PVA nanofibers increased the size of interfibrous pores formed between the PLA fibers. Ultimately, the porosity of the PLA/PVA scaffolds increased from 78 % to 99 %, and the time of water absorption decreased from 516 to 2 s. The change in wettability was induced by a synergistic effect of decrease in roughness after washing out and the presence of residual PVA fibers. The chemical analysis carried out confirmed the presence of PVA residues on the PLA fibers (FTIR-ATR study). In vitro studies were performed on human keratinocytes (HaKaT) and macrophages (RAW264.7), for which penetration into the inner part of the PLAIIPVA scaffold was observed. The new proposed approach, which allows the removal of PVA fibers from the bicomponent material, allows to obtain a scaffold with increased porosity, and thus better permeability for cells and nutrients., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
14. Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood.
- Author
-
Wójtowicz D and Stodolak-Zych E
- Abstract
An extracorporeal blood purification method called continuous renal replacement therapy uses a porous hollow-fiber polymeric membrane that is exposed to prolonged contact with blood. In that condition, like with any other submerged filtration membrane, the hemofilter loses its properties over time and use resulting in a rapid decline in flux. The most significant reason for this loss is the formation of a biofilm. Protein, blood cells and bacterial cells attach to the membrane surface in complex and fluctuating processes. Anticoagulation allows for longer patency of vascular access and a longer lifespan of the membrane. Other preventive measures include the modification of the membrane itself. In this article, we focused on the role of nanoadditives in the mitigation of biofouling. Nanoparticles such as graphene, carbon nanotubes, and silica effectively change surface properties towards more hydrophilic, affect pore size and distribution, decrease protein adsorption and damage bacteria cells. As a result, membranes modified with nanoparticles show better flow parameters, longer lifespan and increased hemocompatibility.
- Published
- 2023
- Full Text
- View/download PDF
15. Laparoscopic embryo transfer in pigs - comparison of different variants and efficiencies of the method.
- Author
-
Wieczorek J, Stodolak-Zych E, Okoń K, Koseniuk J, Bryła M, Jura J, Poniedziałek-Kempny K, Rajska I, Sobol K, Kotula Balak M, and Chmurska-Gasowska M
- Subjects
- Female, Animals, Swine, Fallopian Tubes, Uterus, Blastocyst, Embryo Transfer veterinary, Laparoscopy veterinary
- Abstract
The aim of the study was to develop a method of laparoscopic embryo transfer in pigs and to compare different variants of this method. Two catheter diameters (1.6 mm and 1.0 mm), the method and site of embryo deposition (oviduct or uterus), the embryo development stage (2 - 4 cell or blastocyst), the method for oviduct or uterus stabilization, the potential for cryopreserved embryo transfer, the developmental potential of the embryos after transfer to the oviduct, patomorphology of the oviduct after transfer and possible clinical complications were taken into consideration. Two studies compared two variants of transfer to the uterus, and five variants of transfer to the fallopian tube. The transfer of embryos by the infundibulum may be of limited use due to handling problems and very low efficiency (pregnancy was not achieved). Very low efficiency was shown after transfer of vitrified embryos. Transfer to the fallopian tube by puncture of the fallopian tube, regardless of the developmental stage of the embryo, is the recommended method of embryo transfer. The histopathological examination of the fallopian tube revealed possible changes within the puncture site. The numerous clinical complications observed did not affect the effectiveness of the method., (Copyright© by the Polish Academy of Sciences.)
- Published
- 2023
- Full Text
- View/download PDF
16. Functionalized Halloysite Nanotubes as Potential Drug Carriers.
- Author
-
Stodolak-Zych E, Rapacz-Kmita A, Gajek M, Różycka A, Dudek M, and Kluska S
- Abstract
The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but also on the biocidal properties of the carriers. In order to fully examine the halloysite in terms of the possibility of gentamicin incorporating, a number of modifications of the native halloysite were carried out prior to gentamicin intercalation with the use of sodium alkali, sulfuric and phosphoric acids, curcumin and the process of delamination of nanotubes (expanded halloysite) with ammonium persulfate in sulfuric acid. Gentamicin was added to unmodified and modified halloysite in an amount corresponding to the cation exchange capacity of pure halloysite from the Polish Dunino deposit, which was the reference sample for all modified carriers. The obtained materials were tested to determine the effect of surface modification and their interaction with the introduced antibiotic on the biological activity of the carrier, kinetics of drug release, as well as on the antibacterial activity against Escherichia coli Gram-negative bacteria (reference strain). For all materials, structural changes were examined using infrared spectroscopy (FTIR) and X-ray diffraction (XRD); thermal differential scanning calorimetry with thermogravimetric analysis (DSC/TG) was performed as well. The samples were also observed for morphological changes after modification and drug activation by transmission electron microscopy (TEM). The conducted tests clearly show that all samples of halloysite intercalated with gentamicin showed high antibacterial activity, with the highest antibacterial activity for the sample modified with sodium hydroxide and intercalated with the drug. It was found that the type of halloysite surface modification has a significant effect on the amount of gentamicin intercalated and then released into the surrounding environment but does not significantly affect its ability to further influence drug release over time. The highest amount of drug released among all intercalated samples was recorded for halloysite modified with ammonium persulfate (real loading efficiency above 11%), for which high antibacterial activity was found after surface modification, before drug intercalation. It is also worth noting that intrinsic antibacterial activity was found for non-drug-intercalated materials after surface functionalization with phosphoric acid (V) and ammonium persulfate in the presence of sulfuric acid (V).
- Published
- 2023
- Full Text
- View/download PDF
17. Defects in hafnium-doped lutetium oxide and the corresponding electron traps: a meta-generalized gradient approximation study.
- Author
-
Shyichuk A, Kulesza D, and Zych E
- Abstract
A number of Lu
2 O3 -based materials were reported to present efficient capability of trapping excited charge carriers in metastable excited states formed either by specific dopants or naturally occurring defects. Over the years, abundant experimental data have been collected, which were taken as a solid ground to treat the problem using computational chemistry. Density functional theory (DFT) calculations with an advanced meta generalized gradient approximation (mGGA) functional were used to analyze electron trapping in cubic Lu2 O3 doped with Hf. Individual ions of dopant and nearest-neighbor dopant ion pairs were considered. The effects of interstitial anions such as O2- and Cl- were analyzed. In most of the analyzed cases the additional electron charge is localized at the dopant site. However, in many of the studied cases, the dopant/defect states overlap with the conduction band and cannot correspond to electron trapping. The Hf3+ ion in the Lu site of C3i local symmetry ({\rm Hf}^{\times}_{{\rm Lu}-C_{\rm 3i}}) corresponds to a moderate trap depth of 0.8-0.9 eV. Several composite defects corresponding to deeper (1.1-1.4 eV) traps also exist. Unambiguous deep traps (1.5-1.8 eV) correspond to systems with Hf dopant in the cationic void, accompanied by two interstitial oxygen atoms. The results thus indicate that basic `Hf-substitutes-Lu' doping is unlikely to correspond to the deep traps observed experimentally in Lu2 O3 :Tb,Hf andLu2 O3 :Pr,Hf and more complex defects must be involved.- Published
- 2022
- Full Text
- View/download PDF
18. Effect of Ionic and Non-Ionic Surfactant on Bovine Serum Albumin Encapsulation and Biological Properties of Emulsion-Electrospun Fibers.
- Author
-
Kurpanik R, Lechowska-Liszka A, Mastalska-Popławska J, Nocuń M, Rapacz-Kmita A, Ścisłowska-Czarnecka A, and Stodolak-Zych E
- Subjects
- Emulsions chemistry, Excipients, Lipoproteins, Micelles, Polymers, Serum Albumin, Bovine chemistry, Pulmonary Surfactants, Surface-Active Agents chemistry, Surface-Active Agents pharmacology
- Abstract
Emulsion electrospinning is a method of modifying a fibers' surface and functional properties by encapsulation of the bioactive molecules. In our studies, bovine serum albumin (BSA) played the role of the modifier, and to protect the protein during the electrospinning process, the W/O (water-in-oil) emulsions were prepared, consisting of polymer and micelles formed from BSA and anionic (sodium dodecyl sulfate-S) or nonionic (Tween 80-T) surfactant. It was found that the micelle size distribution was strongly dependent on the nature and the amount of the surfactant, indicating that a higher concentration of the surfactant results in a higher tendency to form smaller micelles (4-9 µm for S and 8-13 µm for T). The appearance of anionic surfactant micelles reduced the diameter of the fiber (100-700 nm) and the wettability of the nonwoven surface (up to 77°) compared to un-modified PCL polymer fibers (100-900 nm and 130°). The use of a non-ionic surfactant resulted in better loading efficiency of micelles with albumin (about 90%), lower wettability of the nonwoven fabric (about 25°) and the formation of larger fibers (100-1100 nm). X-ray photoelectron spectroscopy (XPS) was used to detect the presence of the protein, and UV-Vis spectrophotometry was used to determine the loading efficiency and the nature of the release. The results showed that the location of the micelles influenced the release profiles of the protein, and the materials modified with micelles with the nonionic surfactant showed no burst release. The release kinetics was characteristic of the zero-order release model compared to anionic surfactants. The selected surfactant concentrations did not adversely affect the biological properties of fibrous substrates, such as high viability and low cytotoxicity of RAW macrophages 264.7.
- Published
- 2022
- Full Text
- View/download PDF
19. Assessment of sheep knee joint after ACL replacement with Achilles tendon autograft and PLA-based implant.
- Author
-
Stodolak-Zych E, Ficek K, Wieczorek J, Kajor M, Gryń K, Rapacz-Kmita A, Rajca J, Kosenyuk Y, Stolarz M, and Błażewicz S
- Subjects
- Animals, Autografts, Knee Joint surgery, Polyesters, Sheep, Achilles Tendon, Anterior Cruciate Ligament surgery
- Abstract
In this study, we propose a new approach in the anterior cruciate ligament (ACL) replacement to provide stability and integration with bone tunnel. A polylactide (PLA)-based tubular implant was used to support the graft stabilization in femoral and tibial bones and to stimulate the healing process after (ACL) replacement on a sheep model. The ACL was replaced with an autologous Achilles tendon split graft. The tendon-to-bone healing in the model was analyzed after 6 and 12 weeks. Two groups of animals were compared, i.e. the group with the PLA-based implant used in the ACL replacement and the control group without the implant. The knee joints were mechanically and clinically evaluated, including the histopathology tests, to determine their stability and integrity. The results indicated that the bioresorbable PLA-based tubular implant may facilitate integration of the tendon graft with bone. Remodeling the allograft inside the implant improves the joint mobility from the first week of healing: no pathological changes were observed at the surgery site and in the animals' mobility. After 6 and 12 weeks of healing no significant changes in the mechanical parameters of the knee joint were observed, regarding the joint failure force, knee displacement, angular mobility range and joint stiffness. Relatively small values of the non-destructive tests in the knee displacement, already 6 weeks after surgery, indicated the early stabilization of the knee joint. The studies showed that the failure forces of knee joints after the ACL replacement with the PLA-based implant are lower than those of an intact joint, although their biomechanical features, including strain-at- failure, are similar. The biomechanical parameters of the knee joint were significantly improved due to the selected method of attaching the autograft ends to the femoral and tibial bone surfaces. After 12 weeks the intra-tunnel tendon-bone site with the PLA implant revealed the better tibia-femur joint mechanical stability, linear force-strain function and the decreasing strain-to-failure value, as compared to the control group., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.