7 results on '"egg production and quality"'
Search Results
2. Peppermint extract improves egg production and quality, increases antioxidant capacity, and alters cecal microbiota in late-phase laying hens.
- Author
-
Miaomiao Bai, Hongnan Liu, Yihui Zhang, Shanshan Wang, Yirui Shao, Xia Xiong, Xin Hu, Rongyao Yu, Wei Lan, Yadong Cui, and Xiangfeng Kong
- Subjects
EGG yolk ,AGRICULTURAL egg production ,HENS ,EGG quality ,OXIDANT status ,GUT microbiome - Abstract
Introduction: Peppermint contains substantial bioactive ingredients belonging to the phytoestrogens, and its effects on the production of late-laying hens deserve more attention. This study evaluated the effects of dietary peppermint extract (PE) supplementation on egg production and quality, yolk fatty acid composition, antioxidant capacity, and cecal microbiota in late-phase laying hens. Method: PE powder was identified by UPLC-MS/MS analysis. Two hundred and sixteen laying hens (60 weeks old) were randomly assigned to four treatments, each for 28 days: (i) basal diet (control group, CON); (ii) basal diet + 0.1% PE; (iii) basal diet + 0.2% PE; and (iv) basal diet + 0.4% PE. Egg, serum, and cecal samples were collected for analysis. Results: Dietary PE supplementation increased the laying rate, serum triglyceride, immunoglobulin G, and total antioxidant capacity, while 0.2 and 0.4% PE supplementation increased eggshell thickness, serum total protein level, and superoxide dismutase activity of laying hens compared with the CON group (P < 0.05). PE addition in diets increased the C14:0, C18:3n3, C18:3n6, C23:0, C24:0, and C24:ln9 contents in the yolk. In addition, the egg yolk saturated fatty acid content was higher (P < 0.05) in the 0.2 and 0.4% PE groups compared with the CON and 0.1% PE groups. The microbiota analysis revealed that the cecal phylum Proteobacteria was decreased (P < 0.05) in the PE-supplemented groups. A total of 0.4% PE supplementation increased the cecal richness of gram-positive bacteria and decreased the richness of gram-negative and potentially pathogenic bacteria compared with the 0.1% PE group (P < 0.05). Microbial function prediction analysis showed that the cecal microbiota of the PE group was mainly enriched by fatty acid degradation, fatty acid metabolism, amino sugar metabolism, nucleotide sugar metabolism, and other pathways. Regression analysis suggested that 0.28-0.36% PE supplementation was the optimal level for improving egg production and quality, antioxidant capacity, and yolk fatty acid in late-phase laying hens. Discussion: Dietary PE supplementation improved egg production and quality (including yolk fatty acid composition) by increasing serum IgG and antioxidant capacity and modulating the intestinal microbiota in late-phase laying hens. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA)
- Author
-
Anderson N. Maina, Eva Lewis, and Elijah G. Kiarie
- Subjects
DHA-enriched egg ,egg production and quality ,hen ,algal oil ,Animal culture ,SF1-1100 - Abstract
ABSTRACT: Enriching eggs with omega-3 fatty acids (n-3 FA), such as docosahexaenoic acid (DHA), is a well-accepted practice that benefits the egg industry and consumers. However, issues around cost, sustainability, and product acceptance have necessitated the search for alternatives to feeding hens fish oil for DHA enrichment. The effects of feeding 2 algal oils on egg production and DHA enrichment in eggs and selected tissues were investigated. The algal oils were: 1) OmegaPro (OPAO) standardized algal oil for DHA content and 2) Crude algal oil (CAO). A total of 400, 46-wk-old Lohmann LSL lite hens were housed in enriched cages (10 birds/cage) and allocated 5 diets (n = 8) for a 12-wk trial. The iso-caloric and -nitrogenous diets were a standard corn and soybean meal diet, standard plus 0.25 or 0.76% OPAO and standard plus 0.23 or 0.69% CAO; algal oils diets supplied similar DHA at each level. Egg production indices (hen day egg production, feed intake, FCR, egg weight, egg mass, and eggshell quality) were monitored for 10 wk. Diet samples were analyzed for fatty acids (FA) on wk 1, 6, and 12 and eggs on wk 4, 5, 6, 9, and 12. At the end of the trial, one hen/cage was weighed and dissected for liver, breast and thigh for FA and long bones for ash content analyses. Concentration of omega-6 to omega-3 FA ratio was 12.9, 6.64, 3.48, 6.96, and 3.59 for standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO, respectively. Algal oils increased (P ≤ 0.046) eggshell thickness linearly. The concentration of DHA in the eggs from the birds fed the standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO was 84, 195, 286, 183, and 297 mg/100g egg, respectively, and algal oils enriched eggs with DHA linearly and quadratically (P ≤ 0.01). In conclusion, algal oils increased the concentration of DHA in eggs and had no adverse effects on egg production and eggshell quality.
- Published
- 2023
- Full Text
- View/download PDF
4. Egg production, egg quality, organ weight, bone ash, and plasma metabolites in 30-week-old Lohmann LSL lite hens fed corn and soybean meal-based diets supplemented with enzymatically treated yeast
- Author
-
Colin A. De Cloet, Anderson N. Maina, Hagen Schulze, Gregoy Y. Bédécarrats, and Elijah G. Kiarie
- Subjects
enzymatically treated yeast ,laying hen ,egg production and quality ,gastrointestinal health and metabolism ,Animal culture ,SF1-1100 - Abstract
ABSTRACT: Highly prolific modern hens are susceptible to metabolic disorders that could be modulated by functional feedstuffs such as enzymatically treated yeast (ETY). Therefore, we assessed the dose-response of ETY on hen-day egg production (HDEP), egg quality attributes, organ weight, bone ash, and plasma metabolites in laying hens. A total of 160 thirty-week-old Lohmann LSL lite hens were placed in 40 enriched cages (4 birds/cage) based on body weight (BW) and allocated to 5 diets in a completely randomized design for a 12-wk trial. The diets were isocaloric and isonitrogenous corn and soybean meal based supplemented with 0.0, 0.025, 0.05, 0.1, or 0.2% ETY. Feed and water were provided ad libitum; HDEP and feed intake (FI) were monitored weekly, whereas egg components, eggshell breaking strength (ESBS), and thickness (EST) were monitored biweekly, and albumen IgA concentration was measured on wk 12. At the end of the trial, 2 birds/cage were bled for plasma and necropsied for liver, spleen, and bursa weight, ceca digesta for short chain fatty acids (SCFA) and tibia and femur for ash content. Supplemental ETY reduced HDEP quadratically (P = 0.03); the HDEP was 98, 98, 96, 95, and 94% for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. However, ETY linearly and quadratically (P = 0.01) increased egg weight (EW) and egg mass (EM). Specifically, EM was 57.9, 60.9, 59.9, 58.9, and 59.2 g/b for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. Egg albumen increased linearly (P = 0.01), and egg yolk decreased linearly (P = 0.03) in response to ETY. In response to ETY, the ESBS and plasma Ca increased linearly and quadratically (P ≤ 0.03). Plasma concentration of total protein and albumin increased quadratically (P ≤ 0.05) with ETY. Diets had no (P > 0.05) effects on FI, FCR, bone ash, SCFA, and IgA. In conclusion, 0.1% or higher ETY reduced egg production rate; however, linear improvement in EW and shell quality linked to larger albumen and higher plasma protein and Ca suggested modulation in protein and calcium metabolism.
- Published
- 2023
- Full Text
- View/download PDF
5. Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA).
- Author
-
Maina, Anderson N., Lewis, Eva, and Kiarie, Elijah G.
- Subjects
- *
AGRICULTURAL egg production , *EGG quality , *DOCOSAHEXAENOIC acid , *FATTY acids , *OMEGA-3 fatty acids , *FISH oils , *EGGS - Abstract
Enriching eggs with omega-3 fatty acids (n-3 FA), such as docosahexaenoic acid (DHA), is a well-accepted practice that benefits the egg industry and consumers. However, issues around cost, sustainability, and product acceptance have necessitated the search for alternatives to feeding hens fish oil for DHA enrichment. The effects of feeding 2 algal oils on egg production and DHA enrichment in eggs and selected tissues were investigated. The algal oils were: 1) OmegaPro (OPAO) standardized algal oil for DHA content and 2) Crude algal oil (CAO). A total of 400, 46-wk-old Lohmann LSL lite hens were housed in enriched cages (10 birds/cage) and allocated 5 diets (n = 8) for a 12-wk trial. The iso-caloric and -nitrogenous diets were a standard corn and soybean meal diet, standard plus 0.25 or 0.76% OPAO and standard plus 0.23 or 0.69% CAO; algal oils diets supplied similar DHA at each level. Egg production indices (hen day egg production, feed intake, FCR, egg weight, egg mass, and eggshell quality) were monitored for 10 wk. Diet samples were analyzed for fatty acids (FA) on wk 1, 6, and 12 and eggs on wk 4, 5, 6, 9, and 12. At the end of the trial, one hen/cage was weighed and dissected for liver, breast and thigh for FA and long bones for ash content analyses. Concentration of omega-6 to omega-3 FA ratio was 12.9, 6.64, 3.48, 6.96, and 3.59 for standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO, respectively. Algal oils increased (P ≤ 0.046) eggshell thickness linearly. The concentration of DHA in the eggs from the birds fed the standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO was 84, 195, 286, 183, and 297 mg/100g egg, respectively, and algal oils enriched eggs with DHA linearly and quadratically (P ≤ 0.01). In conclusion, algal oils increased the concentration of DHA in eggs and had no adverse effects on egg production and eggshell quality. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Peppermint extract improves egg production and quality, increases antioxidant capacity, and alters cecal microbiota in late-phase laying hens.
- Author
-
Bai M, Liu H, Zhang Y, Wang S, Shao Y, Xiong X, Hu X, Yu R, Lan W, Cui Y, and Kong X
- Abstract
Introduction: Peppermint contains substantial bioactive ingredients belonging to the phytoestrogens, and its effects on the production of late-laying hens deserve more attention. This study evaluated the effects of dietary peppermint extract (PE) supplementation on egg production and quality, yolk fatty acid composition, antioxidant capacity, and cecal microbiota in late-phase laying hens., Method: PE powder was identified by UPLC-MS/MS analysis. Two hundred and sixteen laying hens (60 weeks old) were randomly assigned to four treatments, each for 28 days: (i) basal diet (control group, CON); (ii) basal diet + 0.1% PE; (iii) basal diet + 0.2% PE; and (iv) basal diet + 0.4% PE. Egg, serum, and cecal samples were collected for analysis., Results: Dietary PE supplementation increased the laying rate, serum triglyceride, immunoglobulin G, and total antioxidant capacity, while 0.2 and 0.4% PE supplementation increased eggshell thickness, serum total protein level, and superoxide dismutase activity of laying hens compared with the CON group ( P < 0.05). PE addition in diets increased the C14:0, C18:3n3, C18:3n6, C23:0, C24:0, and C24:1n9 contents in the yolk. In addition, the egg yolk saturated fatty acid content was higher ( P < 0.05) in the 0.2 and 0.4% PE groups compared with the CON and 0.1% PE groups. The microbiota analysis revealed that the cecal phylum Proteobacteria was decreased ( P < 0.05) in the PE-supplemented groups. A total of 0.4% PE supplementation increased the cecal richness of gram-positive bacteria and decreased the richness of gram-negative and potentially pathogenic bacteria compared with the 0.1% PE group ( P < 0.05). Microbial function prediction analysis showed that the cecal microbiota of the PE group was mainly enriched by fatty acid degradation, fatty acid metabolism, amino sugar metabolism, nucleotide sugar metabolism, and other pathways. Regression analysis suggested that 0.28-0.36% PE supplementation was the optimal level for improving egg production and quality, antioxidant capacity, and yolk fatty acid in late-phase laying hens., Discussion: Dietary PE supplementation improved egg production and quality (including yolk fatty acid composition) by increasing serum IgG and antioxidant capacity and modulating the intestinal microbiota in late-phase laying hens., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Bai, Liu, Zhang, Wang, Shao, Xiong, Hu, Yu, Lan, Cui and Kong.)
- Published
- 2023
- Full Text
- View/download PDF
7. Egg production, egg quality, organ weight, bone ash, and plasma metabolites in 30-week-old Lohmann LSL lite hens fed corn and soybean meal-based diets supplemented with enzymatically treated yeast.
- Author
-
De Cloet, Colin A., Maina, Anderson N., Schulze, Hagen, Bédécarrats, Gregoy Y., and Kiarie, Elijah G.
- Subjects
- *
BONE ash , *AGRICULTURAL egg production , *EGGS , *EGG quality , *SHORT-chain fatty acids , *DIETARY supplements , *EGG yolk - Abstract
Highly prolific modern hens are susceptible to metabolic disorders that could be modulated by functional feedstuffs such as enzymatically treated yeast (ETY). Therefore, we assessed the dose-response of ETY on hen-day egg production (HDEP), egg quality attributes, organ weight, bone ash, and plasma metabolites in laying hens. A total of 160 thirty-week-old Lohmann LSL lite hens were placed in 40 enriched cages (4 birds/cage) based on body weight (BW) and allocated to 5 diets in a completely randomized design for a 12-wk trial. The diets were isocaloric and isonitrogenous corn and soybean meal based supplemented with 0.0, 0.025, 0.05, 0.1, or 0.2% ETY. Feed and water were provided ad libitum; HDEP and feed intake (FI) were monitored weekly, whereas egg components, eggshell breaking strength (ESBS), and thickness (EST) were monitored biweekly, and albumen IgA concentration was measured on wk 12. At the end of the trial, 2 birds/cage were bled for plasma and necropsied for liver, spleen, and bursa weight, ceca digesta for short chain fatty acids (SCFA) and tibia and femur for ash content. Supplemental ETY reduced HDEP quadratically (P = 0.03); the HDEP was 98, 98, 96, 95, and 94% for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. However, ETY linearly and quadratically (P = 0.01) increased egg weight (EW) and egg mass (EM). Specifically, EM was 57.9, 60.9, 59.9, 58.9, and 59.2 g/b for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. Egg albumen increased linearly (P = 0.01), and egg yolk decreased linearly (P = 0.03) in response to ETY. In response to ETY, the ESBS and plasma Ca increased linearly and quadratically (P ≤ 0.03). Plasma concentration of total protein and albumin increased quadratically (P ≤ 0.05) with ETY. Diets had no (P > 0.05) effects on FI, FCR, bone ash, SCFA, and IgA. In conclusion, 0.1% or higher ETY reduced egg production rate; however, linear improvement in EW and shell quality linked to larger albumen and higher plasma protein and Ca suggested modulation in protein and calcium metabolism. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.