1. Self-Assembled Three-Dimensional Graphene-Based Polyhedrons Inducing Volumetric Light Confinement.
- Author
-
Joung, Daeha, Nemilentsau, Andrei, Agarwal, Kriti, Chunhui Dai, Chao Liu, Qun Su, Jing Li, Tony Low, Koester, Steven J., and Jeong-Hyun Cho
- Subjects
- *
MOLECULAR self-assembly , *GRAPHENE , *POLYHEDRA , *VOLUMETRIC analysis , *MICROSTRUCTURE - Abstract
The ability to transform two-dimensional (2D) materials into a three-dimensional (3D) structure while preserving their unique inherent properties might offer great enticing opportunities in the development of diverse applications for next generation micro/nanodevices. Here, a self-assembly process is introduced for building free-standing 3D, micro/nanoscale, hollow, polyhedral structures configured with a few layers of graphene-based materials: graphene and graphene oxide. The 3D structures have been further modified with surface patterning, realized through the inclusion of metal patterns on their 3D surfaces. The 3D geometry leads to a nontrivial spatial distribution of strong electric fields (volumetric light confinement) induced by 3D plasmon hybridization on the surface of the graphene forming the 3D structures. Due to coupling in all directions, resulting in 3D plasmon hybridization, the 3D closed box graphene generates a highly confined electric field within as well as outside of the cubes. Moreover, since the uniform coupling reduces the decay of the field enhancement away from the surface, the confined electric field inside of the 3D structure shows two orders of magnitude higher than that of 2D graphene before transformation into the 3D structure. Therefore, these structures might be used for detection of target substances (not limited to only the graphene surfaces, but using the entire volume formed by the 3D graphene-based structure) in sensor applications. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF