1. Combining Climatic Projections and Dispersal Ability: A Method for Estimating the Responses of Sandfly Vector Species to Climate Change.
- Author
-
Fischer, Dominik, Moeller, Philipp, Thomas, Stephanie M., Naucke, Torsten J., and Beierkuhnlein, Carl
- Subjects
MEDICAL climatology ,DISPERSAL (Ecology) ,CLIMATE change ,DISEASE vectors ,PHLEBOTOMUS ,SPECIES ,ADENOVIRUS diseases ,VECTOR-borne diseases ,LYME disease - Abstract
Background: In the Old World, sandfly species of the genus Phlebotomus are known vectors of Leishmania, Bartonella and several viruses. Recent sandfly catches and autochthonous cases of leishmaniasis hint on spreading tendencies of the vectors towards Central Europe. However, studies addressing potential future distribution of sandflies in the light of a changing European climate are missing. Methodology: Here, we modelled bioclimatic envelopes using MaxEnt for five species with proven or assumed vector competence for Leishmania infantum, which are either predominantly located in (south-) western (Phlebotomus ariasi, P. mascittii and P. perniciosus) or south-eastern Europe (P. neglectus and P. perfiliewi). The determined bioclimatic envelopes were transferred to two climate change scenarios (A1B and B1) for Central Europe (Austria, Germany and Switzerland) using data of the regional climate model COSMO-CLM. We detected the most likely way of natural dispersal ("least-cost path") for each species and hence determined the accessibility of potential future climatically suitable habitats by integrating landscape features, projected changes in climatic suitability and wind speed. Results and Relevance: Results indicate that the Central European climate will become increasingly suitable especially for those vector species with a current south-western focus of distribution. In general, the highest suitability of Central Europe is projected for all species in the second half of the 21st century, except for P. perfiliewi. Nevertheless, we show that sandflies will hardly be able to occupy their climatically suitable habitats entirely, due to their limited natural dispersal ability. A northward spread of species with south-eastern focus of distribution may be constrained but not completely avoided by the Alps. Our results can be used to install specific monitoring systems to the projected risk zones of potential sandfly establishment. This is urgently needed for adaptation and coping strategies against the emerging spread of sandfly-borne diseases. Author Summary: Growing evidence exists on the emergence of sandfly-borne diseases in the light of climate change. Determining the principle responses of phlebotomine sandflies to climatic changes supports our understanding of future regions that will be threatened by new-establishments of this important group of disease vectors. The aim of this paper is to combine projected climatic suitability for five Phlebotomus species in Central Europe (Austria, Germany and Switzerland) for different time-periods during the 21st century with their potential spreading capacity to disperse to climatically suitable areas. We indicate that the Central European climate will develop toward the preferred bioclimatic niche of the species, especially from mid-century onwards. Nevertheless, we also elucidate within this study that sandflies will hardly be able to occupy the whole areas that will provide suitable climatic conditions due to their limited natural dispersal ability. Our approach provides a framework to combine statistical modelling techniques with expert knowledge on species ecology. Indications of future occurrences of disease vectors may help to initiate surveillance systems in specific regions at an early stage of risk exposure. Hence, the threat of the climate-driven spatial extension of disease vectors and consequently of potentially emerging vector-borne diseases can be counteracted. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF