Christian Dujak, Matthew Ordidge, Morgane Roth, E. Zurawicz, Mariusz Lewandowski, Annemarie Auwerkerken, Marco C. A. M. Bink, Caroline Denancé, Bruno Studer, Walter Guerra, Andrea Patocchi, Celia M. Cantín, Beat Keller, Maria José Aranzana, Nicholas P. Howard, Carolina Font i Forcada, Nadia Sanin, Charles-Eric Durel, François Laurens, Michaela Jung, Helene Muranty, Marijn Rymenants, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Agroscope Changins-Wädenswil, Swiss Federal Research Station, Plant Protection Division (ACW), Federal Department of Economic Affairs DEA, Génétique et Amélioration des Fruits et Légumes (GAFL), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institute of Agrifood Research and Technology [Sant Carles de la Ràpita] (IRTA), Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), Better3Fruit N.V., Partenaires INRAE, Wageningen University and Research [Wageningen] (WUR), Hendrix Genetics Research, Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institute for Space Studies of Catalonia [Barcelona] (IEEC-CSIC), Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Research Centre Laimburg, University of Minnesota [Twin Cities] (UMN), University of Minnesota System, Carl Von Ossietzky Universität Oldenburg = Carl von Ossietzky University of Oldenburg (OFFIS), AI Investments [Skierniewice], University of Reading (UOR), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), INRAE SelGen grant (project named GDivSelGen: 'Efficient use of genetic diversity in genomic selection'), project RIS3CAT (COTPA-FRUIT3CAT) - European Regional Development Fund through the FEDER frame of Catalonia 2014-2020, CERCA Program from Generalitat de Catalunya, Spanish Ministry of Economy and Competitiveness through the 'Severo Ochoa Program for Centres of Excellence in RD' 2016-2019 : SEV-20150533, 'DON CARLOS ANTONIO LOPEZ' Abroad Postgraduate Scholarship Program, BECAL-Paraguay., European Project: 265582,EC:FP7:KBBE,FP7-KBBE-2010-4,FRUIT BREEDOMICS(2011), European Commission, Generalitat de Catalunya, Ministerio de Economía y Competitividad (España), Institute of Agrifood Research and Technology (IRTA), Université d'Angers (UA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Carl Von Ossietzky Universität Oldenburg, Producció Vegetal, Genòmica i Biotecnologia, and Fructicultura
Breeding of apple is a long-term and costly process due to the time and space requirements for screening selection candidates. Genomics-assisted breeding utilizes genomic and phenotypic information to increase the selection efficiency in breeding programs, and measurements of phenotypes in different environments can facilitate the application of the approach under various climatic conditions. Here we present an apple reference population: the apple REFPOP, a large collection formed of 534 genotypes planted in six European countries, as a unique tool to accelerate apple breeding. The population consisted of 269 accessions and 265 progeny from 27 parental combinations, representing the diversity in cultivated apple and current European breeding material, respectively. A high-density genome-wide dataset of 303,239 SNPs was produced as a combined output of two SNP arrays of different densities using marker imputation with an imputation accuracy of 0.95. Based on the genotypic data, linkage disequilibrium was low and population structure was weak. Two well-studied phenological traits of horticultural importance were measured. We found marker–trait associations in several previously identified genomic regions and maximum predictive abilities of 0.57 and 0.75 for floral emergence and harvest date, respectively. With decreasing SNP density, the detection of significant marker–trait associations varied depending on trait architecture. Regardless of the trait, 10,000 SNPs sufficed to maximize genomic prediction ability. We confirm the suitability of the apple REFPOP design for genomics-assisted breeding, especially for breeding programs using related germplasm, and emphasize the advantages of a coordinated and multinational effort for customizing apple breeding methods in the genomics era., This work was partially supported by the project RIS3CAT (COTPA-FRUIT3CAT) financed by the European Regional Development Fund through the FEDER frame of Catalonia 2014–2020 and by the CERCA Program from Generalitat de Catalunya. We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa Program for Centres of Excellence in R&D” 2016–2019 (SEV‐20150533). This work has been partially funded by the EU seventh Framework Program, the FruitBreedomics project No. 265582: Integrated Approach for Increasing Breeding Efficiency in Fruit Tree Crops.