1. EasyAnimate: A High-Performance Long Video Generation Method based on Transformer Architecture
- Author
-
Xu, Jiaqi, Zou, Xinyi, Huang, Kunzhe, Chen, Yunkuo, Liu, Bo, Cheng, MengLi, Shi, Xing, and Huang, Jun
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Computation and Language ,Computer Science - Multimedia - Abstract
This paper presents EasyAnimate, an advanced method for video generation that leverages the power of transformer architecture for high-performance outcomes. We have expanded the DiT framework originally designed for 2D image synthesis to accommodate the complexities of 3D video generation by incorporating a motion module block. It is used to capture temporal dynamics, thereby ensuring the production of consistent frames and seamless motion transitions. The motion module can be adapted to various DiT baseline methods to generate video with different styles. It can also generate videos with different frame rates and resolutions during both training and inference phases, suitable for both images and videos. Moreover, we introduce slice VAE, a novel approach to condense the temporal axis, facilitating the generation of long duration videos. Currently, EasyAnimate exhibits the proficiency to generate videos with 144 frames. We provide a holistic ecosystem for video production based on DiT, encompassing aspects such as data pre-processing, VAE training, DiT models training (both the baseline model and LoRA model), and end-to-end video inference. Code is available at: https://github.com/aigc-apps/EasyAnimate. We are continuously working to enhance the performance of our method., Comment: 8 pages, 6 figures
- Published
- 2024