1. Second-harmonic generation in silicon waveguides strained by silicon nitride
- Author
-
Federica Bianco, Valérie Véniard, Stefano Ossicini, Stefan Wabnitz, R. Pierobon, Massimo Cazzanelli, E. Borga, Lorenzo Pavesi, Elena Degoli, Daniele Modotto, E. Luppi, Georg Pucker, Mher Ghulinyan, Univ Trent, Nanosci Lab, Dept Phys, I-38123 Povo, Trento, Italy, affiliation inconnue, Fondazione Bruno Kessler [Trento, Italy] (FBK), Bruno Kessler Fdn, Adv Photon e Photovolta Unit, I-38123 Povo, Trento, Italy, Dipartimento di Scienze e Metodi dell'Ingegneria [Reggio Emilia] (DISMI), Università degli Studi di Modena e Reggio Emilia (UNIMORE), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC), Università degli Studi di Brescia [Brescia], Laboratoire de Physique de l'Université de Bourgogne (LPUB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), CIVEN, I-30175 Venezia Marghera, Italy, Laboratorio di Nanoscienze, Dipartimento di Fisica, Universita di Trento, Centro S3, Istituto Nanoscienze [Modena] (CNR NANO), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA, Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), ETSF, Palaiseau, France, Univ Brescia, Dept Informat Engn, I-25123 Brescia, Italy, Università degli Studi di Trento (UNITN), Università degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia (UNIMORE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Brescia = University of Brescia (UniBs), University of California [Berkeley] (UC Berkeley), and University of California (UC)
- Subjects
REFLECTION ,Materials science ,Silicon ,Hybrid silicon laser ,Silicon photonics ,Silicon on insulator ,chemistry.chemical_element ,Physics::Optics ,Hardware_PERFORMANCEANDRELIABILITY ,02 engineering and technology ,01 natural sciences ,SEMICONDUCTORS ,010309 optics ,chemistry.chemical_compound ,RAMAN-SPECTROSCOPY ,Hardware_GENERAL ,DEFORMATION ,0103 physical sciences ,Harmonic generation ,information management ,light sources ,Hardware_INTEGRATEDCIRCUITS ,HARMONIC-GENERATION ,General Materials Science ,Silicon bandgap temperature sensor ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,second-harmonic generation ,experiments and ab-initio calculations ,Semiconductor ,chemistry ,Silicon nitride ,Mechanics of Materials ,Optoelectronics ,Photonics ,0210 nano-technology ,business - Abstract
International audience; Silicon photonics meets the electronics requirement of increased speed and bandwidth with on-chip optical networks. All-optical data management requires nonlinear silicon photonics. In silicon only third-order optical nonlinearities are present owing to its crystalline inversion symmetry. Introducing a second-order nonlinearity into silicon photonics by proper material engineering would be highly desirable. It would enable devices for wideband wavelength conversion operating at relatively low optical powers. Here we show that a sizeable second-order nonlinearity at optical wavelengths is induced in a silicon waveguide by using a stressing silicon nitride overlayer. We carried out second-harmonic-generation experiments and first-principle calculations, which both yield large values of strain-induced bulk second-order nonlinear susceptibility, up to 40 pm V-1 at 2,300 nm. We envisage that nonlinear strained silicon could provide a competing platform for a new class of integrated light sources spanning the near-to mid-infrared spectrum from 1.2 to 10μm.
- Published
- 2012
- Full Text
- View/download PDF