1. Advances on Microsupercapacitors: Real Fast Miniaturized Devices toward Technological Dreams for Powering Embedded Electronics?
- Author
-
Pascal Roussel, Christophe Lethien, Khac Huy Dinh, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Circuits Systèmes Applications des Micro-ondes - IEMN (CSAM - IEMN ), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 847568. The authors thank the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01). The French RENATECH network and the University of Lille are greatly acknowledged for supporting the Center of MicroNanoFabrication (CMNF) facility from IEMN., Renatech Network, ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), and European Project: 847568,H2020,H2020-MSCA-COFUND-2018,PEARL(2019)
- Subjects
General Chemical Engineering ,General Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics - Abstract
International audience; Electrochemical lithium (de)intercalation in an atomic layer deposited (ALD) TiO2 anatase thin film deposited on a planar Si /Al2O3/Pt substrate is investigated by Raman spectroscopy. An initial discharge capacity of 63 µAh cm−2 µm−1 (0.5 Li+ mole−1) is reached at C/10 rate, which increases up to 77 µAh cm−2 µm−1 upon further cycles. An excellent capacity retention is achieved over at least 100 cycles, showing the good adherence of the ALD thin film. Raman spectra of LixTiO2 (0 ≤ x ≤ 0.5) thin film electrodes point to the nucleation of the orthorhombic lithiated titanate (LT) Li0.5TiO2 phase from x = 0.1. This LT phase coexists with tetragonal TiO2 in the 0.1 ≤ x ≤ 0.4 composition domain to be pure for x = 0.5. A fully reversible transformation from orthorhombic LT to tetragonal TiO2 is observed upon the charge. The high quality of the Raman spectra allows identifying for the first time 12 modes in the 100–800 cm−1 region for the electrochemically formed LT phase. Furthermore, an appropriate Raman spectra analysis allows a reliable and quantitative determination of the thin film composition during discharge and charge. These results illustrate Raman spectroscopy is a powerful probe to scrutinize the Li insertion/extraction mechanism in TiO2 thin films.
- Published
- 2023
- Full Text
- View/download PDF