9 results on '"François Kimmig"'
Search Results
2. Thermodynamic properties of muscle contraction models and associated discrete-time principles
- Author
-
François Kimmig, Dominique Chapelle, and Philippe Moireau
- Subjects
Muscle contraction ,Sliding filaments ,Thermodynamically consistent time-discretization ,Clausius–Duhem inequality ,Mechanics of engineering. Applied mechanics ,TA349-359 ,Systems engineering ,TA168 - Abstract
Abstract Considering a large class of muscle contraction models accounting for actin–myosin interaction, we present a mathematical setting in which solution properties can be established, including fundamental thermodynamic balances. Moreover, we propose a complete discretization strategy for which we are also able to obtain discrete versions of the thermodynamic balances and other properties. Our major objective is to show how the thermodynamics of such models can be tracked after discretization, including when they are coupled to a macroscopic muscle formulation in the realm of continuum mechanics. Our approach allows to carefully identify the sources of energy and entropy in the system, and to follow them up to the numerical applications.
- Published
- 2019
- Full Text
- View/download PDF
3. Varying thin filament activation in the framework of the Huxley'57 model
- Author
-
François Kimmig, Matthieu Caruel, Dominique Chapelle, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Modélisation et Simulation Multi-Echelle (MSME), and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
- Subjects
Sarcomeres ,Applied Mathematics ,Biomedical Engineering ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Cardiac modeling ,Actins ,Actin Cytoskeleton ,Computational Theory and Mathematics ,Thick and thin filament activation ,Modeling and Simulation ,Huxley'57 model ,Calcium ,Mathematical modeling ,Molecular Biology ,Software ,Muscle Contraction - Abstract
International audience; Muscle contraction is triggered by the activation of the actin sites of the thin filament by calcium ions. It results that the thin filament activation level varies over time. Moreover, this activation process is also used as a regulation mechanism of the developed force. Our objective is to build a model of varying actin site activation level within the classical Huxley'57 two-state framework. This new model is obtained as an enhancement of a previously proposed formulation of the varying thick filament activation within the same framework [1]. We assume that the state of an actin site depends on whether it is activated and whether it forms a cross-bridge with the associated myosin head, which results in four possible states. The transitions between the actin site states are controlled by the global actin sites activation level and the dynamics of these transitions is coupled with the attachment-detachment process. A preliminary calibration of the model with experimental twitch contraction data obtained at varying sarcomere lengths is performed.
- Published
- 2022
- Full Text
- View/download PDF
4. Coupling reduced-order blood flow and cardiac models through energy-consistent strategies: modeling and discretization
- Author
-
Sébastien Imperiale, François Kimmig, Federica Caforio, Philippe Moireau, Jessica Manganotti, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Karl-Franzens-Universität Graz, École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, and Institute of Mathematics and Scientific Computing, University of Graz
- Subjects
Work (thermodynamics) ,Reduced-order models ,Heart models ,Discretization ,Quantitative Biology::Tissues and Organs ,0206 medical engineering ,02 engineering and technology ,030204 cardiovascular system & hematology ,Energy-preserving time-scheme ,Reduced order ,Systems engineering ,Cardiovascular modelling ,03 medical and health sciences ,Arterial segment ,TA168 ,0302 clinical medicine ,Computational Science and Engineering ,Engineering (miscellaneous) ,Physics ,Coupling ,Applied Mathematics ,Mechanics of engineering. Applied mechanics ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Mechanics ,Blood flow ,TA349-359 ,Dicrotic notch ,020601 biomedical engineering ,Computer Science Applications ,Shallow-water models ,Ageing ,Modeling and Simulation ,Energy (signal processing) ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
In this work we provide a novel energy-consistent formulation for the classical 1D formulation of blood flow in an arterial segment. The resulting reformulation is shown to be suitable for the coupling with a lumped (0D) model of the heart that incorporates a reduced formulation of the actin-myosin interaction. The coupling being consistent with energy balances, we provide a complete heart-circulation model compatible with thermodynamics hence stable numerically and informative physiologically. These latter two properties are verified by numerical experiments.
- Published
- 2021
- Full Text
- View/download PDF
5. Hierarchical modeling of length-dependent force generation in cardiac muscles and associated thermodynamically-consistent numerical schemes
- Author
-
Dominique Chapelle, Philippe Moireau, François Kimmig, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
- Subjects
Computer science ,Computational Mechanics ,Ocean Engineering ,Context (language use) ,multi-scale modeling ,Sarcomere ,biomechanics ,03 medical and health sciences ,Myosin head ,0302 clinical medicine ,numerical methods ,030304 developmental biology ,0303 health sciences ,Frank–Starling law of the heart ,Hierarchical modeling ,Applied Mathematics ,Mechanical Engineering ,Numerical analysis ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Cardiac modeling ,Multiscale modeling ,multiscale modeling ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Computational Mathematics ,Computational Theory and Mathematics ,Coupling (computer programming) ,Frank-Starling mechanism ,sarcomere ,Biological system ,030217 neurology & neurosurgery ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; In the context of cardiac muscle modeling, the availability of the myosin heads in the sarcomeres varies over the heart cycle contributing to the Frank-Starling mechanism at the organ level. In this paper, we propose a new approach that allows to extend the Huxley'57 muscle contraction model equations to incorporate this variation. This extension is built in a thermodynamically consistent manner, and we also propose adapted numerical methods that satisfy thermodynamical balances at the discrete level. Moreover, this whole approach-both for the model and the numerics-is devised within a hierarchical strategy enabling the coupling of the microscopic sarcomere-level equations with the macroscopic tissue-level description. As an important illustration, coupling our model with a previously proposed simplified heart model, we demonstrate the ability of the modeling and numerical framework to capture the essential features of the Frank-Starling mechanism.
- Published
- 2021
- Full Text
- View/download PDF
6. Intrinsic regulation of muscle contraction
- Author
-
François Kimmig, Matthieu Caruel, Chapelle, D., Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Modélisation et Simulation Multi-Echelle (MSME), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Caruel, Matthieu, École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
- Subjects
[PHYS.MECA.SOLID] Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] ,length-dependence effects ,contraction regulation ,[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] ,muscle modelling ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2020
7. Hierarchical modeling of force generation in cardiac muscle
- Author
-
Matthieu Caruel, François Kimmig, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Modélisation et Simulation Multi-Echelle (MSME), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
- Subjects
Sarcomeres ,Process (engineering) ,Computer science ,Calibration (statistics) ,media_common.quotation_subject ,Fidelity ,Context (language use) ,computer.software_genre ,Models, Biological ,03 medical and health sciences ,0302 clinical medicine ,model reduction ,Humans ,Computer Simulation ,muscle modeling ,Set (psychology) ,Microscale chemistry ,030304 developmental biology ,media_common ,Mechanical Phenomena ,0303 health sciences ,Stochastic Processes ,Hierarchy (mathematics) ,Mechanical Engineering ,Myocardium ,sliding filaments ,Models, Cardiovascular ,Experimental data ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Heart ,Models, Theoretical ,Myocardial Contraction ,Modeling and Simulation ,cross-bridges ,Calibration ,Calcium ,Data mining ,Stress, Mechanical ,sarcomere ,computer ,030217 neurology & neurosurgery ,Algorithms ,Biotechnology ,Muscle Contraction - Abstract
International audience; Performing physiologically relevant simulations of the beating heart in clinical context requires to develop detailed models of the microscale force generation process. These models however may reveal difficult to implement in practice due to their high computational costs and complex calibration. We propose a hierarchy of three interconnected muscle contraction models-from the more refined to the more simplified-that are rigorously and systematically related with each other, offering a way to select, for a specific application, the model that yields a good trade-off between physiological fidelity, computational cost and calibration complexity. The three models families are compared to the same set of experimental data to systematically assess what physiological indicators can be reproduced or not and how these indicators constrain the model parameters. Finally, we discuss the applicability of these models for heart simulation.
- Published
- 2020
- Full Text
- View/download PDF
8. Activation-CONTRACTION COUPLING IN A MULTISCALE HEART MODEL
- Author
-
François Kimmig, Matthieu Caruel, Dominique Chapelle, Philippe Moireau, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), and Caruel, Matthieu
- Subjects
[PHYS.MECA.SOLID] Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] ,[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] ,[PHYS.MECA.BIOM] Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Mechanics of the solides [physics.class-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
9. Thermodynamic properties of muscle contraction models and associated discrete-time principles
- Author
-
Dominique Chapelle, Philippe Moireau, François Kimmig, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris-Saclay, École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
- Subjects
Large class ,74F25 ·74H15 · 65M12 ·35Q79 and 92C45 ,Discretization ,02 engineering and technology ,Clausius–Duhem inequality ,01 natural sciences ,lcsh:TA168 ,muscle contraction ,0203 mechanical engineering ,medicine ,Computational Science and Engineering ,Statistical physics ,0101 mathematics ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,Engineering (miscellaneous) ,thermodynamically consistent time-discretization ,Mathematics ,Clausius-Duhem inequality ,Continuum mechanics ,Applied Mathematics ,sliding filaments ,Computer Science Applications ,010101 applied mathematics ,020303 mechanical engineering & transports ,Discrete time and continuous time ,lcsh:Systems engineering ,Modeling and Simulation ,medicine.symptom ,lcsh:Mechanics of engineering. Applied mechanics ,lcsh:TA349-359 ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Muscle contraction - Abstract
International audience; Considering a large class of muscle contraction models accounting for actin-myosin interaction, we present a mathematical setting in which solution properties can be established, including fundamental thermodynamic balances. Moreover, we propose a complete discretization strategy for which we are also able to obtain discrete versions of the thermodynamic balances and other properties. Our major objective is to show how the thermodynamics of such models can be tracked after discretization, including when they are coupled to a macroscopic muscle formulation in the realm of continuum mechanics. Our approach allows to carefully identify the sources of energy and entropy in the system, and to follow them up to the numerical applications.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.