18 results on '"Ianniciello, Lucia"'
Search Results
2. Electric vehicles batteries thermal management systems employing phase change materials
- Author
-
Ianniciello, Lucia, Biwolé, Pascal Henry, and Achard, Patrick
- Published
- 2018
- Full Text
- View/download PDF
3. Long life elastocaloric regenerator operating under compression
- Author
-
Ianniciello, Lucia, primary, Bartholomé, Kilian, additional, Fitger, Andreas, additional, and Engelbrecht, Kurt, additional
- Published
- 2022
- Full Text
- View/download PDF
4. Plasma electrolytic polishing of nitinol
- Author
-
Navickaitė, Kristina, Ianniciello, Lucia, Tušek, Jaka, Engelbrecht, Kurt, Bahl, Christian Robert Haffenden, Penzel, Michael, Nestler, Klaus, Böttger-Hiller, Falko, and Zeidler, Henning
- Subjects
nitinol ,elastocalorics ,medical applications ,materiali z oblikovnim spominom ,udc:620.1:538.9:62-97-022.121 ,plasma electrolytic polishing (PeP) ,Ni-Ti ,medicinske aplikacije ,shape memory alloys ,plazemsko elektrolitsko poliranje ,elastokalorični učinek ,mehanska stabilnost ,mechanical stability - Abstract
A novel, environmentally friendly, fast, and flexible polishing process for Nitinol parts is presented in this study. Nitinol samples with both superelastic and shape memory properties at room temperature were investigated. The chemical contamination and surface roughness of superelastic Nitinol plates were examined before and after plasma electrolytic polishing. The shift in phase transformation temperature and tensile strength before and after the polishing process were analysed using Nitinol wire with shape memory properties. The obtained experimental results were compared to the data obtained on reference samples examined in the as-received condition. It was found that plasma electrolytic polishing, when the right process parameters are applied, is capable of delivering Nitinol parts with extremely high surface quality. Moreover, it was experimentally proven that plasma electrolytic polishing does not have a negative impact on functionality or mechanical properties of polished parts.
- Published
- 2021
5. Heat sink avalanche dynamics in elastocaloric Cu–Al–Ni single crystal detected by infrared calorimetry and Gaussian filtering
- Author
-
Capellera, Guillem, primary, Ianniciello, Lucia, additional, Romanini, Michela, additional, and Vives, Eduard, additional
- Published
- 2021
- Full Text
- View/download PDF
6. Plasma Electrolytic Polishing of Nitinol: Investigation of Functional Properties
- Author
-
Technische Universität Bergakademie Freiberg, Navickaite, Kristina, Ianniciello, Lucia, Tušek, Jaka, Engelbrecht, Kurt, Bahl, Christian, Penzel, Michael, Nestler, Klaus, Böttger-Hiller, Falko, Zeidler, Henning, Technische Universität Bergakademie Freiberg, Navickaite, Kristina, Ianniciello, Lucia, Tušek, Jaka, Engelbrecht, Kurt, Bahl, Christian, Penzel, Michael, Nestler, Klaus, Böttger-Hiller, Falko, and Zeidler, Henning
- Abstract
A novel, environmentally friendly, fast, and flexible polishing process for Nitinol parts is presented in this study. Nitinol samples with both superelastic and shape memory properties at room temperature were investigated. The chemical contamination and surface roughness of superelastic Nitinol plates were examined before and after plasma electrolytic polishing. The shift in phase transformation temperature and tensile strength before and after the polishing process were analysed using Nitinol wire with shape memory properties. The obtained experimental results were compared to the data obtained on reference samples examined in the as-received condition. It was found that plasma electrolytic polishing, when the right process parameters are applied, is capable of delivering Nitinol parts with extremely high surface quality. Moreover, it was experimentally proven that plasma electrolytic polishing does not have a negative impact on functionality or mechanical properties of polished parts.
- Published
- 2021
7. Heat sink avalanche dynamics in elastocaloric Cu–Al–Ni single crystal detected by infrared calorimetry and Gaussian filtering
- Author
-
Capellera, Guillem, Ianniciello, Lucia, Romanini, Michela, Vives, Eduard, Capellera, Guillem, Ianniciello, Lucia, Romanini, Michela, and Vives, Eduard
- Abstract
The physics behind the cooling process occurring in an elastocaloric Cu–Al–Ni wire during the martensite to austenite transition after stress release is studied. A previous experiment using infrared imaging determined the temperature map evolution of the sample surface and obtained the qualitative evolution of heat sinks by reversing the Fourier heat equation. The results were only qualitative due to the data smoothing algorithm that was used to correct the experimental noise. We analyze the original data by using a more appropriate Gaussian filter to reject the noise without smoothing the sharp martensite-austenite interfaces. Results show a much better spatial resolution that enables us to obtain new physical variables characterizing the discontinuous, avalanche-like, cooling process: the sink width, the sink cooling power, and the sink velocity.
- Published
- 2021
8. Impact of hysteresis on caloric cooling performance
- Author
-
Masche, Marvin, Ianniciello, Lucia, Tušek, J., Engelbrecht, Kurt, Masche, Marvin, Ianniciello, Lucia, Tušek, J., and Engelbrecht, Kurt
- Abstract
Caloric cooling relies on reversible temperature changes in solids driven by an externally applied field, such as a magnetic field, electric field, uniaxial stress or hydrostatic pressure. Materials exhibiting such a solid-state caloric effect may provide the basis for an alternative to conventional vapor compression technologies. First-order phase transition materials are promising caloric materials, as they yield large reported adiabatic temperature changes compared to second-order phase transition materials, but exhibit hysteresis behavior that leads to possible degradation in the cooling performance. This work quantifies numerically the impact of hysteresis on the performance of a cooling cycle using different modeled caloric materials and a regenerator with a fixed geometry. A previously developed 1D active regenerator model has been used with an additional hysteresis term to predict how modeled materials with a range of realistic hysteresis values affect the cooling performance. The performance is quantified in terms of cooling power, coefficient of performance (COP), and second-law efficiency for a range of operating conditions. The model shows that hysteresis reduces efficiency, with COP falling by up to 50% as the hysteresis entropy generation (qhys) increases from 0.5% to 1%. At higher working frequencies, the cooling performance decreases further due to increased internal heating of the material. Regenerator beds using materials with lower specific heat and higher isothermal entropy change are less affected by hysteresis. Low specific heat materials show positive COP and cooling power up to 2% of qhys whereas high specific heat materials cannot tolerate more than 0.04% of qhys.
- Published
- 2021
9. Plasma Electrolytic Polishing of Nitinol:Investigation of Functional Properties
- Author
-
Navickaitė, Kristina, Ianniciello, Lucia, Tušek, Jaka, Engelbrecht, Kurt, Bahl, Christian R. H., Penzel, Michael, Nestler, Klaus, Böttger-Hiller, Falko, Zeidler, Henning, Navickaitė, Kristina, Ianniciello, Lucia, Tušek, Jaka, Engelbrecht, Kurt, Bahl, Christian R. H., Penzel, Michael, Nestler, Klaus, Böttger-Hiller, Falko, and Zeidler, Henning
- Abstract
A novel, environmentally friendly, fast, and flexible polishing process for Nitinol parts is presented in this study. Nitinol samples with both superelastic and shape memory properties at room temperature were investigated. The chemical contamination and surface roughness of superelastic Nitinol plates were examined before and after plasma electrolytic polishing. The shift in phase transformation temperature and tensile strength before and after the polishing process were analysed using Nitinol wire with shape memory properties. The obtained experimental results were compared to the data obtained on reference samples examined in the as-received condition. It was found that plasma electrolytic polishing, when the right process parameters are applied, is capable of delivering Nitinol parts with extremely high surface quality. Moreover, it was experimentally proven that plasma electrolytic polishing does not have a negative impact on functionality or mechanical properties of polished parts.
- Published
- 2021
10. Tracking the dynamics of power sources and sinks during the martensitic transformation of a Cu-Al-Ni single crystal
- Author
-
Ianniciello, Lucia, Romanini, Michela, Mañosa, Lluis, Planes, Antoni, Engelbrecht, Kurt, Vives, Eduard, Ianniciello, Lucia, Romanini, Michela, Mañosa, Lluis, Planes, Antoni, Engelbrecht, Kurt, and Vives, Eduard
- Abstract
We have tracked the dynamics of the martensitic transformation in a Cu–Al–Ni single crystal by means of acoustic emission and infrared imaging techniques. A Fourier equation-based post-processing of temperature maps has enabled us to reveal the inhomogeneous and discontinuous character of heat power sources and sinks during the transition. A good correlation between the dynamics of thermal and mechanical energy release has been evidenced. It has also been shown that the merging of martensitic interfaces results in an enhanced heat absorption.
- Published
- 2020
11. Tracking the dynamics of power sources and sinks during the martensitic transformation of a Cu–Al–Ni single crystal
- Author
-
Ianniciello, Lucia, primary, Romanini, Michela, additional, Mañosa, Lluís, additional, Planes, Antoni, additional, Engelbrecht, Kurt, additional, and Vives, Eduard, additional
- Published
- 2020
- Full Text
- View/download PDF
12. Ianniciello, Lucia
- Author
-
Ianniciello, Lucia and Ianniciello, Lucia
- Published
- 2019
13. Study of the thermal behavior of an electrochemical battery thermoregulated by phase change materials for electric vehicles
- Author
-
Ianniciello, Lucia, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres, Patrick Achard, and Pascal Henry Biwole
- Subjects
Forced air convection ,Modélisation des transferts thermiques ,Electric vehicle battery stack ,Matériau à changement de phase ,Thermal conductivity enhancement ,Augmentation de la conductivité thermique ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Heat transfers modelling ,Thermal management system ,Système de gestion thermique ,Air en convection forcée ,Stack de batterie pour le véhicule électrique ,Phase change material - Abstract
Li-ion battery thermal management is essential for electric vehicles (EVs), to ensure an optimal autonomy and lifespan of those batteries. Usually, air or coolant circuits are employed as thermal management systems. However, those systems are expensive in terms of investment and operating costs and must be dimensioned on the maximal power to be extracted. The use of phase change materials (PCMs) as latent heat storage medium allowing the absorption of the heat to be dissipated as latent heat may represent an alternative cheaper and easier to operate. In fact, PCMs can passively store the excess heat produced by a device and be used as passive systems. However, PCMs have several drawbacks like the difficulty to discharge the stored thermal load which limits the system’s cyclability or their low thermal conductivity which limits their heat transfer capacity. To solve the problem of the PCM regeneration, an additional active system can be added, dimensioned on a moderate power; the whole becomes a semi-passive system. In this study, a thermal management system composed of a PCM and forced air convection is evaluated. This system permits to combine the respective advantages of the two techniques. A model of the system is developed for one battery cell. A comparison with forced air convection only points out the usefulness of the PCM. To overcome the PCM low thermal conductivity, a highly conductive material can be added to the PCM permitting to obtain a composite with a higher thermal conductivity. Composites based on the PCMs studied and carbon nanostructures are elaborated, and their thermal conductivity is measured. Then, an experimental system permitting to simulate the dissipation of a battery cell is build and used to evaluate the PCM alone, the PCM embedded in metal foam and the better obtained composite. Finally, to be closer to the real conditions, a model representing an entire battery stack is developed, simulations are produced and the obtained results are discussed.; La gestion thermique des batteries Li-ion pour le véhicule électrique est essentielle, pour assurer une autonomie et une durée de vie optimales de ces batteries. Habituellement, des circuits d'air ou de liquide de refroidissement sont utilisés comme systèmes de gestion thermique. Cependant, ces systèmes sont coûteux en termes d'investissement et d'exploitation et doivent être dimensionnés sur la puissance maximale à extraire. L'utilisation de matériaux à changement de phase (MCP) pour l’absorption sous forme de chaleur latente de la chaleur à dissiper peut représenter une alternative moins coûteuse et plus facile à utiliser. En effet, les MCP peuvent stocker passivement la chaleur excédentaire produite et être utilisés en tant que systèmes passifs. Cependant, les MCP présentent de nombreux inconvénients comme la difficulté de décharger l’énergie thermique stockée, ce qui limite l’aptitude du système au cyclage, ou encore leur conductivité thermique peu élevée qui limite les capacités d’échange. Pour résoudre le problème de la régénération des MCP, un système actif supplémentaire peut être ajouté, dimensionné sur une puissance modérée; l'ensemble devient alors un système semi-passif. Dans cette étude, un système de gestion thermique composé d'un MCP et d’air en convection forcée est évalué. Ce système permet de coupler les avantages de ces deux techniques. Une modélisation du système est développée pour une cellule de batterie. Une comparaison avec de l’air uniquement, en convection forcée, montre l'utilité du MCP. Pour augmenter la capacité d’échange du MCP, un matériau à haute conductivité thermique peut être ajouté au MCP, ce qui permet d’obtenir un composite ayant une conductivité thermique plus élevée. Des composites basés sur les MCP étudiés et des nanostructures de carbone sont élaborés, leur conductivité thermique est mesurée. Ensuite, un système expérimental simulant la dissipation d’une cellule de batterie est construit et utilisé pour évaluer le MCP seul, le MCP inclus dans une mousse métallique et le meilleur composite obtenu. Enfin, pour se rapprocher des conditions réelles, un modèle représentant un stack entier de batterie est développé, des simulations sont produites et les résultats obtenus sont commentés.
- Published
- 2018
14. Etude du comportement thermique d'une batterie électrochimique thermorégulée par matériaux à changement de phase pour le véhicule électrique
- Author
-
Ianniciello, Lucia, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres, Patrick Achard, and Pascal Henry Biwole
- Subjects
Forced air convection ,Modélisation des transferts thermiques ,Electric vehicle battery stack ,Matériau à changement de phase ,Thermal conductivity enhancement ,Augmentation de la conductivité thermique ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Heat transfers modelling ,Thermal management system ,Système de gestion thermique ,Air en convection forcée ,Stack de batterie pour le véhicule électrique ,Phase change material - Abstract
Li-ion battery thermal management is essential for electric vehicles (EVs), to ensure an optimal autonomy and lifespan of those batteries. Usually, air or coolant circuits are employed as thermal management systems. However, those systems are expensive in terms of investment and operating costs and must be dimensioned on the maximal power to be extracted. The use of phase change materials (PCMs) as latent heat storage medium allowing the absorption of the heat to be dissipated as latent heat may represent an alternative cheaper and easier to operate. In fact, PCMs can passively store the excess heat produced by a device and be used as passive systems. However, PCMs have several drawbacks like the difficulty to discharge the stored thermal load which limits the system’s cyclability or their low thermal conductivity which limits their heat transfer capacity. To solve the problem of the PCM regeneration, an additional active system can be added, dimensioned on a moderate power; the whole becomes a semi-passive system. In this study, a thermal management system composed of a PCM and forced air convection is evaluated. This system permits to combine the respective advantages of the two techniques. A model of the system is developed for one battery cell. A comparison with forced air convection only points out the usefulness of the PCM. To overcome the PCM low thermal conductivity, a highly conductive material can be added to the PCM permitting to obtain a composite with a higher thermal conductivity. Composites based on the PCMs studied and carbon nanostructures are elaborated, and their thermal conductivity is measured. Then, an experimental system permitting to simulate the dissipation of a battery cell is build and used to evaluate the PCM alone, the PCM embedded in metal foam and the better obtained composite. Finally, to be closer to the real conditions, a model representing an entire battery stack is developed, simulations are produced and the obtained results are discussed.; La gestion thermique des batteries Li-ion pour le véhicule électrique est essentielle, pour assurer une autonomie et une durée de vie optimales de ces batteries. Habituellement, des circuits d'air ou de liquide de refroidissement sont utilisés comme systèmes de gestion thermique. Cependant, ces systèmes sont coûteux en termes d'investissement et d'exploitation et doivent être dimensionnés sur la puissance maximale à extraire. L'utilisation de matériaux à changement de phase (MCP) pour l’absorption sous forme de chaleur latente de la chaleur à dissiper peut représenter une alternative moins coûteuse et plus facile à utiliser. En effet, les MCP peuvent stocker passivement la chaleur excédentaire produite et être utilisés en tant que systèmes passifs. Cependant, les MCP présentent de nombreux inconvénients comme la difficulté de décharger l’énergie thermique stockée, ce qui limite l’aptitude du système au cyclage, ou encore leur conductivité thermique peu élevée qui limite les capacités d’échange. Pour résoudre le problème de la régénération des MCP, un système actif supplémentaire peut être ajouté, dimensionné sur une puissance modérée; l'ensemble devient alors un système semi-passif. Dans cette étude, un système de gestion thermique composé d'un MCP et d’air en convection forcée est évalué. Ce système permet de coupler les avantages de ces deux techniques. Une modélisation du système est développée pour une cellule de batterie. Une comparaison avec de l’air uniquement, en convection forcée, montre l'utilité du MCP. Pour augmenter la capacité d’échange du MCP, un matériau à haute conductivité thermique peut être ajouté au MCP, ce qui permet d’obtenir un composite ayant une conductivité thermique plus élevée. Des composites basés sur les MCP étudiés et des nanostructures de carbone sont élaborés, leur conductivité thermique est mesurée. Ensuite, un système expérimental simulant la dissipation d’une cellule de batterie est construit et utilisé pour évaluer le MCP seul, le MCP inclus dans une mousse métallique et le meilleur composite obtenu. Enfin, pour se rapprocher des conditions réelles, un modèle représentant un stack entier de batterie est développé, des simulations sont produites et les résultats obtenus sont commentés.
- Published
- 2018
15. Gestion thermique des batteries Li-ion par l'utilisation de matériaux à changement de phase et d'air en convection forcée
- Author
-
Ianniciello, Lucia, Biwole, Pascal Henry, Achard, Patrick, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; La gestion thermique des batteries Li-ion par matériaux à changement de phase (MCP) représente une solution intéressante pour pouvoir éviter de façon passive toute surchauffe des batteries. Le problème de ce système est d'évacuer l'énergie stockée dans le MCP et d'assurer ainsi le cyclage du système. L'ajout d'un système pour régénérer le MCP s'avère nécessaire. Le système étudié dans ce papier comporte un MCP et une circulation d'air en convection forcée. Le MCP sert à absorber la puissance dégagée par la batterie et l'air est exclusivement utilisé pour régénérer le MCP et assurer le cyclage du système. Nomenclature B 0 fonction pour le changement de phase B 1 fonction lissée pour le changement de phase Cp chaleur spécifique, J.kg-1 .K-1 D fonction Delta Dirac lissé h coefficient de convection forcée, W.m-2 .K-1 k conductivité thermique, W.m-1 .K-1 L F chaleur latente de fusion, J.kg-1 m MCP masse de MCP, kg Q batterie chaleur dégagée par la batterie, J T température, K T m température de fusion, K T s température de surface, K u vitesse, m/s Symbole grec ΔT différence de température, K ρ masse volumique, kg.m-3
- Published
- 2017
16. Gestion thermique des batteries Li-ion par l'utilisation de matériaux à changement de phase
- Author
-
Ianniciello, Lucia, Biwole, Pascal Henry, Achard, Patrick, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
stockage par chaleur latente ,gestion thermique ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,matériaux à changement de phase ,système passif ,batteries Li-ion ,véhicule électrique - Abstract
International audience; Les batteries lithium-ion nécessitent une gestion thermique pour que soit assuré leur bon fonctionnement. Des systèmes actifs comme un refroidissement par air en convection forcée ou par un liquide de refroidissement sont employés actuellement. L’utilisation de matériaux à changement de phase (MCP), en tant que système passif, représente une alternative intéressante. Dans ce papier une comparaison est proposée entre un système comportant un MCP et un système à air en convection forcée.
- Published
- 2017
17. A hybrid system for battery thermal management for electric vehicles
- Author
-
Ianniciello, Lucia, Biwole, Pascal Henry, Achard, Patrick, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
latent heat storage ,thermal management system ,semi-passive system ,Hardware_GENERAL ,phase change materials ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; Electric cars are limited by the performances of Li-ion batteries. Usually, air or coolant circulation systems are employed as battery thermal management systems. The disadvantages of those systems are their complex implementation, their cost and the phantom electric load. Phase change materials (PCMs), represent a promising solution to achieve passive thermal management. The challenge of this solution is to quickly release the thermal energy stored in the PCMs. A solution proposed is the incorporation of an additional system to discharge the PCM. This hybrid system is presented in this paper.
- Published
- 2017
18. Plasma Electrolytic Polishing of Nitinol: Investigation of Functional Properties.
- Author
-
Navickaitė K, Ianniciello L, Tušek J, Engelbrecht K, Bahl CRH, Penzel M, Nestler K, Böttger-Hiller F, and Zeidler H
- Abstract
A novel, environmentally friendly, fast, and flexible polishing process for Nitinol parts is presented in this study. Nitinol samples with both superelastic and shape memory properties at room temperature were investigated. The chemical contamination and surface roughness of superelastic Nitinol plates were examined before and after plasma electrolytic polishing. The shift in phase transformation temperature and tensile strength before and after the polishing process were analysed using Nitinol wire with shape memory properties. The obtained experimental results were compared to the data obtained on reference samples examined in the as-received condition. It was found that plasma electrolytic polishing, when the right process parameters are applied, is capable of delivering Nitinol parts with extremely high surface quality. Moreover, it was experimentally proven that plasma electrolytic polishing does not have a negative impact on functionality or mechanical properties of polished parts.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.