Rapid field conversion of chemical weapons into non-toxic products is one of the most challenging tasks in weapons of mass destruction (WMD) science. This is particularly the case for eliminating stockpiles of chemical warfare agents (CWAs) in remote storage field locations, where the use of large quantities of decontaminating reagents, long reaction times, and controlled mechanical agitation is impossible or undesired. New efficient “clean” technologies and (bio)chemical processes are thus sought for detoxifying stored agents, counteracting nerve-agent attacks, and decommissioning chemical weapons. Environmentally friendly solutions of hydrogen peroxide, combined with suitable activators (e.g., bicarbonate), have been shown to be extremely useful for decontaminating a broad spectrum of CWAs to yield nontoxic products. These peroxide-based systems, which rely on the in situ generation of OOH nucleophiles, have recently replaced chlorine-based bleaching processes, which produce undesirable products, and have thus led to effective decontamination of the chemical agents GB (Sarin, isopropyl methylphosphonofluoridate), VX ((S)-[2-(diisopropylamino)ethyl] O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (sulfur mustard). Yet, such an oxidative treatment commonly requires high peroxide concentrations (20–30%; approaching a stoichiometry of 1:50), along with prolonged operation and/or mechanical agitation. Such reaction conditions are not suitable or not desired for eliminating stockpiles of CWAs in remote field settings or hostile storage locations, as large quantities of the reagents may not be transportable on military aircrafts and require special packaging and handling. The efficient elimination of chemical-weapon stockpiles in field locations thus remains a major challenge to the chemistry and defense communities. Herein, we describe a powerful strategy that is based on self-propelled micromotors, for a high-yielding accelerated oxidative decontamination of chemical threats using low peroxide levels and no external agitation. Functionalized synthetic micromotors have recently demonstrated remarkable capabilities in terms of isolation and transport for diverse biomedical and environmental applications, but not in connection to increasing the yield and speed of chemical reactions. The new motor-based method relies on the use of peroxide-driven microtubular engines for the efficient selfmixing of a remediation solution, which dramatically accelerates the decontamination process. Fluid mixing is extremely important for enhancing the yield and speed of a wide range of chemical processes, including decontamination reactions, where quiescent conditions lead to low reaction efficiency and long operations. The observed mixing, which is induced by the peroxide-driven micromotor, is analogous to that reported for the motility of E. coli bacteria, where a large-scale collective motion has been shown to enhance diffusion processes. Enhanced diffusion of passive tracers has also been observed in the presence of catalytic nanowire motors. Although the new micromotor strategy presented herein was applied to the accelerated, high-yielding, and simplified decontamination of organophosphate (OP) nerve agents, the concept could have broad implications for enhancing the efficiency and speed of a wide range of chemical processes in the absence of external agitation. The concept of the micromotor/peroxide-based decontamination of chemical threats is illustrated in Figure 1. This new strategy relies on micromotors without mechanical stirring (Figure 1A). A known number of micromotors were placed in a nerve-agent-contaminated solution, along with hydrogen peroxide (used as the oxidizing agent as well as the micromotor fuel), the peroxide activator (NaHCO3 or NaOH), and the surfactant sodium cholate (NaCh), which was essential for bubble generation. The oxidative conversion of the OP nerve agent into para-nitrophenol (p-NP) was achieved under mild quiescent conditions that involve the in situ generation of OOH nucleophiles with no external stirring (Figure 1B). The decrease in concentration of the OP [*] Dr. J. Orozco, G. Cheng, D. Vilela, Dr. S. Sattayasamitsathit, Prof. R. Vazquez-Duhalt, Dr. G. Vald s-Ram rez, Dr. O. S. Pak, Prof. J. Wang Departments of Nanoengineering and Mechanical Engineering University of California San Diego La Jolla, CA 92093 (USA) E-mail: josephwang@ucsd.edu G. Cheng, Prof. C. Kan Tsinghua University, Beijing, 100084 (China) D. Vilela, Prof. A. Escarpa University of Alcal 28871 Alcal de Henares (Spain)