1. Institutional-Level Monitoring of Immune Checkpoint Inhibitor IrAEs Using a Novel Natural Language Processing Algorithmic Pipeline
- Author
-
Shapiro, Michael, Dor, Herut, Gurevich-Shapiro, Anna, Etan, Tal, and Wolf, Ido
- Subjects
Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
Background: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment but can result in severe immune-related adverse events (IrAEs). Monitoring IrAEs on a large scale is essential for personalized risk profiling and assisting in treatment decisions. Methods: In this study, we conducted an analysis of clinical notes from patients who received ICIs at the Tel Aviv Sourasky Medical Center. By employing a Natural Language Processing algorithmic pipeline, we systematically identified seven common or severe IrAEs. We examined the utilization of corticosteroids, treatment discontinuation rates following IrAEs, and constructed survival curves to visualize the occurrence of adverse events during treatment. Results: Our analysis encompassed 108,280 clinical notes associated with 1,635 patients who had undergone ICI therapy. The detected incidence of IrAEs was consistent with previous reports, exhibiting substantial variation across different ICIs. Treatment with corticosteroids varied depending on the specific IrAE, ranging from 17.3% for thyroiditis to 57.4% for myocarditis. Our algorithm demonstrated high accuracy in identifying IrAEs, as indicated by an area under the curve (AUC) of 0.89 for each suspected note and F1 scores of 0.87 or higher for five out of the seven IrAEs examined at the patient level. Conclusions: This study presents a novel, large-scale monitoring approach utilizing deep neural networks for IrAEs. Our method provides accurate results, enhancing understanding of detrimental consequences experienced by ICI-treated patients. Moreover, it holds potential for monitoring other medications, enabling comprehensive post-marketing surveillance to identify susceptible populations and establish personalized drug safety profiles.
- Published
- 2024