1. Acute changes in acceleration phase sprint biomechanics with lower body wearable resistance.
- Author
-
Simperingham, Kim David, Cronin, John B, Ross, Angus, Brown, Scott R., Macadam, Paul, and Pearson, Simon
- Subjects
- *
RESISTANCE training , *BODY weight , *CROSS-sectional method , *TIME , *ATHLETES , *TREADMILLS , *RUGBY football , *LEG , *PHYSIOLOGICAL effects of acceleration , *DESCRIPTIVE statistics , *BIOMECHANICS , *SPRINTING , *KINEMATICS , *GROUND reaction forces (Biomechanics) - Abstract
The aim of this acute cross-sectional study was to quantify the kinematic and kinetic changes that occur during sprint acceleration when lower body WR is worn. Fifteen male rugby athletes (19 years; 181 cm; 91 kg) were assessed during maximal effort over−ground and treadmill sprinting over 20 m under three different loading conditions: 0%, 3% and 5% body mass (BM) added weight attached to the lower body. Treadmill data provided a convenient estimate of kinetic changes in the absence of in-ground force plates. The loaded conditions resulted in significantly increased ground contact time (5 to 6%) and decreased step frequency (−2 to −3%) during sprint accelerations (effect size = 0.32–0.72). Moderate WR loading (3% BM) resulted in increased (9%; effect size = 0.66) theoretical maximum horizontal force (relative to BM) and unchanged 20 m sprint times (p > 0.05). Heavier WR loading (5% BM) resulted in a significant decrease (−4%) in vertical ground reaction forces (relative to total system mass) and slower (1 to 2%) 20 m sprint times (effect size = 0.38–0.70). Lower body WR loading up to 5% BM can provide specific sprint training overload, while affecting sprint acceleration biomechanics by ≤ 6%. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF