1. Toward data efficient online sequential learning
- Author
-
Yang, Kaige
- Abstract
Can machines optimally take sequential decisions over time? Since decades, researchers have been seeking an answer to this question, with the ultimate goal of unlocking the potential of artificial general intelligence (AGI) for a better and sustainable society. Many are the sectors that would be boosted by machines being able to take efficient sequential decisions over time. Let think at real-world applications such as personalized systems in entertainment (content systems) but also in healthcare (personalized therapy), smart cities (traffic control, flooding prevention), robots (control and planning), etc. However, letting machines taking proper decisions in real-life is a highly challenging task. This is caused by the uncertainty behind such decisions (uncertainty on the actual reward, on the context, on the environment, etc.). A viable solution is to learn by experience (i.e., by trial and error), letting the machines uncover the uncertainty while taking decisions, and refining its strategy accordingly. However, such refinement is usually highly data-hungry (data-inefficiency), requiring a large amount of application specified data, leading to very slow learning processes -- hence very slow convergence to optimal strategies (curse of dimensionality). Luckily, data is usually intrinsically structured. Identifying and exploiting such structure substantially improves the data-efficiency of sequential learning algorithms. This is the key hypothesis underpinning the research in this thesis, in which novel structural learning methodologies are proposed for decision-making strategies problems such as Recommendation System (RS), Multi-armed Bandit (MAB) and Reinforcement Learning (RL), with the ultimate goal of making the learning process more (data)-efficient. Specifically, we tackle such goal from the perspective of modelling the problem structure as graphs, embedding tools from graph signal processing into decision learning theory. As the first step, we study the application of graph-clustering techniques for RS, in which the curse of dimensionality is addressed by grouping data into clusters via graph-clustering techniques. Next, we exploit spectral graph structure for MAB problems, representing online learning problems. A key challenge is to learn sequentially the unknown bandit vector. Exploiting the smoothness-prior (i.e., bandit vector smooth on a given underpinning graph), we study theoretically the Laplacian-regularized estimator and provide both empirical evidences and theoretical analysis on the benefits of exploiting the graph structure in MABs. Then, we focus on the theoretical understanding of the Laplacian-regularized estimator. To this end, we derive a theoretical error upper bound on the estimator, which illustrates the impact of the alignment between the data and the graph structure as well as the graph spectrum on the estimation accuracy. We then move to RL problems, focusing on the specific problem of learning a proper representation of the state-action (representation learning problem). Motivated by the fact that a good representation should be informative of the value function, we seek a learning algorithm able to preserve continuity between the value function and the representation space. Showing that state values are intrinsically correlated to the state transition dynamic structure and the diffusion of the reward on the MDP graph, we build a new loss function based on the newly defined diffusion distance and we propose a novel method to learn state representation with such desirable property. In summary, in this thesis we address both theoretically and empirically important online sequential learning problems leveraging on the intrinsic data structure, showing the gain of the proposed solutions toward more data-efficient sequential learning strategies.
- Published
- 2023