5 results on '"hypoxic radiosensitivity"'
Search Results
2. Antidiabetic Biguanides Radiosensitize Hypoxic Colorectal Cancer Cells Through a Decrease in Oxygen Consumption
- Author
-
Sven de Mey, Heng Jiang, Cyril Corbet, Hui Wang, Inès Dufait, Kalun Law, Estelle Bastien, Valeri Verovski, Thierry Gevaert, Olivier Feron, and Mark De Ridder
- Subjects
phenformin ,metformin ,hypoxic radiosensitivity ,mitochondrial complex I ,oxygen consumption rate ,colorectal cancer ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Background and Purpose: The anti-diabetic biguanide drugs metformin and phenformin exhibit antitumor activity in various models. However, their radiomodulatory effect under hypoxic conditions, particularly for phenformin, is largely unknown. This study therefore examines whether metformin and phenformin as mitochondrial complex I blockades could overcome hypoxic radioresistance through inhibition of oxygen consumption.Materials and Methods: A panel of colorectal cancer cells (HCT116, DLD-1, HT29, SW480, and CT26) was exposed to metformin or phenformin for 16 h at indicated concentrations. Afterward, cell viability was measured by MTT and colony formation assays. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) was examined by western blot. Mitochondria complexes activity and oxygen consumption rate (OCR) were measured by seahorse analyzer. The radiosensitivity of tumor cells was assessed by colony formation assay under aerobic and hypoxic conditions. The in vitro findings were further validated in colorectal CT26 tumor model.Results: Metformin and phenformin inhibited mitochondrial complex I activity and subsequently reduced OCR in a dose-dependent manner starting at 3 mM and 30 μM, respectively. As a result, the hypoxic radioresistance of tumor cells was counteracted by metformin and phenformin with an enhancement ratio about 2 at 9 mM and 100 μM, respectively. Regarding intrinsic radioresistance, both of them did not exhibit any effect although there was an increase of phosphorylation of AMPK and ROS production. In tumor-bearing mice, metformin or phenformin alone did not show any anti-tumor effect. While in combination with radiation, both of them substantially delayed tumor growth and enhanced radioresponse, respectively, by 1.3 and 1.5-fold.Conclusion: Our results demonstrate that metformin and phenformin overcome hypoxic radioresistance through inhibition of mitochondrial respiration, and provide a rationale to explore metformin and phenformin as hypoxic radiosensitizers.
- Published
- 2018
- Full Text
- View/download PDF
3. Antidiabetic Biguanides Radiosensitize Hypoxic Colorectal Cancer Cells Through a Decrease in Oxygen Consumption.
- Author
-
de Mey, Sven, Jiang, Heng, Corbet, Cyril, Wang, Hui, Dufait, Inès, Law, Kalun, Bastien, Estelle, Verovski, Valeri, Gevaert, Thierry, Feron, Olivier, and De Ridder, Mark
- Abstract
Background and Purpose: The anti-diabetic biguanide drugs metformin and phenformin exhibit antitumor activity in various models. However, their radiomodulatory effect under hypoxic conditions, particularly for phenformin, is largely unknown. This study therefore examines whether metformin and phenformin as mitochondrial complex I blockades could overcome hypoxic radioresistance through inhibition of oxygen consumption. Materials and Methods: A panel of colorectal cancer cells (HCT116, DLD-1, HT29, SW480, and CT26) was exposed to metformin or phenformin for 16 h at indicated concentrations. Afterward, cell viability was measured by MTT and colony formation assays. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) was examined by western blot. Mitochondria complexes activity and oxygen consumption rate (OCR) were measured by seahorse analyzer. The radiosensitivity of tumor cells was assessed by colony formation assay under aerobic and hypoxic conditions. The in vitro findings were further validated in colorectal CT26 tumor model. Results: Metformin and phenformin inhibited mitochondrial complex I activity and subsequently reduced OCR in a dose-dependent manner starting at 3 mM and 30 μM, respectively. As a result, the hypoxic radioresistance of tumor cells was counteracted by metformin and phenformin with an enhancement ratio about 2 at 9 mM and 100 μM, respectively. Regarding intrinsic radioresistance, both of them did not exhibit any effect although there was an increase of phosphorylation of AMPK and ROS production. In tumor-bearing mice, metformin or phenformin alone did not show any anti-tumor effect. While in combination with radiation, both of them substantially delayed tumor growth and enhanced radioresponse, respectively, by 1.3 and 1.5-fold. Conclusion: Our results demonstrate that metformin and phenformin overcome hypoxic radioresistance through inhibition of mitochondrial respiration, and provide a rationale to explore metformin and phenformin as hypoxic radiosensitizers. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells
- Author
-
Hugo Vandenplas, Sven de Mey, Inès Dufait, Olivier Feron, Thierry Gevaert, Mark De Ridder, Lisa Kerkhove, Cyril Corbet, Melissa Van De Gucht, Ka Lun Law, Heng Jiang, Hui Wang, Clinical sciences, Faculty of Medicine and Pharmacy, Radiation Therapy, and Translational Radiation Oncology and Physics
- Subjects
Pyruvate dehydrogenase kinase ,Breast Neoplasms ,Oxidative phosphorylation ,Radiation Tolerance ,Article ,Catalysis ,Cell Line ,Inorganic Chemistry ,lcsh:Chemistry ,breast cancer ,Radioresistance ,Humans ,hypoxic radiosensitivity ,Radiosensitivity ,Enzyme Inhibitors ,Physical and Theoretical Chemistry ,dichloroacetate ,Molecular Biology ,lcsh:QH301-705.5 ,Spectroscopy ,chemistry.chemical_classification ,reactive oxygen species ,Reactive oxygen species ,Dichloroacetic Acid ,Organic Chemistry ,Pyruvate Dehydrogenase Acetyl-Transferring Kinase ,General Medicine ,Metabolism ,Pyruvate dehydrogenase complex ,Computer Science Applications ,chemistry ,lcsh:Biology (General) ,lcsh:QD1-999 ,oncology ,Cancer cell ,Cancer research ,Tumor Hypoxia ,Female - Abstract
Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.
- Published
- 2020
5. Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells.
- Author
-
de Mey, Sven, Dufait, Inès, Jiang, Heng, Corbet, Cyril, Wang, Hui, Van De Gucht, Melissa, Kerkhove, Lisa, Law, Ka Lun, Vandenplas, Hugo, Gevaert, Thierry, Feron, Olivier, and De Ridder, Mark
- Subjects
- *
PYRUVATE dehydrogenase kinase , *CANCER cells , *BREAST cancer , *TRIPLE-negative breast cancer , *REACTIVE oxygen species - Abstract
Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.