1. Efficient Hydrolysis of Sugar Beet Pulp Using Novel Enzyme Complexes
- Author
-
Maria I. Komarova, Margarita V. Semenova, Pavel V. Volkov, Igor A. Shashkov, Alexandra M. Rozhkova, Ivan N. Zorov, Sergei A. Kurzeev, Aidar D. Satrutdinov, Ekaterina A. Rubtsova, and Arkady P. Sinitsyn
- Subjects
beet pulp ,plant polysaccharides ,enzymatic conversion ,Penicillium verruculosum ,Agriculture - Abstract
Sugar beet pulp is a byproduct of white sugar production, and it is quite significant in terms of volume. Every year, tens of millions of tons of beet pulp are produced around the world. However, only a fraction of it is currently used, mainly as animal feed. The composition of beet pulp includes plant polysaccharides, such as cellulose, arabinan, and pectin. Through the process of enzymatic hydrolysis, these polysaccharides are converted into technical C6/C5 sugars, which can be further used as a substrate for the microbial synthesis of various substances, including biofuels, organic acids, and other green chemistry molecules. The current study was designed with a primary objective that focused on the development of a strain that had the potential for enhanced productivity and the capacity to produce enzymes suitable for beet pulp hydrolysis. The pelA and abfA genes, which encode pectin lyase and arabinofuranosidase, respectively, in the fungus Penicillium canescens (VKPM F-178), were cloned and successfully expressed in the recipient strain Penicillium verruculosum B1-537 (VKPM F-3972D). New recombinant strains were created using the expression system of the mycelial fungus P. verruculosum B1-537, which is capable of simultaneously producing pectin lyase and arabinofuranosidase, as well as homologous cellulases. The screening of strains for increased enzymatic activity towards citrus pectin, sugar beet branched arabinan, and microcrystalline cellulose revealed that a B4 clone of P. verruculosum exhibited the greatest potential in sugar beet pulp cake hydrolysis. This clone was selected as the basis for the creation of a new enzyme preparation with enhanced pectin lyase, arabinase, and cellulase activities. The component composition of the enzyme preparation was determined, and the results indicated that the enzyme content comprised approximately 11% pectin lyase, 40% arabinofuranosidase, and 40% cellulases. The primary products of the enzymatic hydrolysis of the unpretreated beet pulp cake were arabinose and glucose. The degree of arabinan and cellulose conversion was observed to be up to 50% and 80%, respectively, after a period of 48 to 72 h of hydrolysis. The new B4 preparation was observed to be highly efficacious in the hydrolysis of beet cake at elevated concentrations of solids (up to 300 g/L) within the reaction mixture. The newly developed strain, as a producer of pectin lyase, arabinofuranosidase, and cellulase complexes, has the potential to be utilized for the bioconversion of sugar beet processing wastes and for the efficient generation of highly concentrated solutions of technical sugars for further implementation in processes of microbial synthesis.
- Published
- 2025
- Full Text
- View/download PDF