Concurrent heavy metals remediation in natural environments poses significant challenges due to factors like metal speciation and interactions with soil moisture. This review focuses on strategies for immobilizing both anionic and cationic metals simultaneously in soil-crop systems. Key approaches include water management, biochar utilization, stabilizing agents, nanotechnology, fertilization, and bioremediation. Sprinkler or intermittent irrigation combined with soil amendments/biochar effectively immobilizes As/Cd/Pb simultaneously. This immobilization occurs through continuous adsorption-desorption, oxidation-reduction, and precipitation mechanisms influenced by soil pH, redox reactions, and Fe-oxides. Biochar from sources like wine lees, sewage sludge, spent coffee, and Fe-nanoparticles can immobilize As/Cd/Pb/Cr/Co/Cu/Zn together via precipitation. In addition, biochar from rice, wheat, corn straw, rice husk, sawdust, and wood chips, modified with chemicals or nanoparticles, simultaneously immobilizes As and Cd, containing higher Fe 3 O 4 , Fe-oxide, and OH groups. Ligand exchange immobilizes As, while ion exchange immobilizes Cd. Furthermore, combining biochar especially with iron, hydroxyapatite, magnetite, goethite, silicon, graphene, alginate, compost, and microbes-can achieve simultaneous immobilization. Other effective amendments are selenium fertilizer, Ge-nanocomposites, Fe-Si materials, ash, hormone, and sterilization. Notably, combining nano-biochar with microbes and/or fertilizers with Fe-containing higher adsorption sites, metal-binding cores, and maintaining a neutral pH could stimulate simultaneous immobilization. The amendments have a positive impact on soil physio-chemical improvement and crop development. Crops enhance production of growth metabolites, hormones, and xylem tissue thickening, forming a protective barrier by root Fe-plaque containing higher Fe-oxide, restricting upward metal movement. Therefore, a holistic immobilization mechanism reduces plant oxidative damage, improves soil and crop quality, and reduces food contamination., Competing Interests: Declaration of competing interest The authors declare that there are no known competing personal, professional, financial, and work-related issues that could appear as a negative influence in future before and after publication., (Copyright © 2024 Elsevier Ltd. All rights reserved.)