7 results on '"Bonari G"'
Search Results
2. Global decoupling of functional and phylogenetic diversity in plant communities.
- Author
-
Hähn GJA, Damasceno G, Alvarez-Davila E, Aubin I, Bauters M, Bergmeier E, Biurrun I, Bjorkman AD, Bonari G, Botta-Dukát Z, Campos JA, Čarni A, Chytrý M, Ćušterevska R, de Gasper AL, De Sanctis M, Dengler J, Dolezal J, El-Sheikh MA, Finckh M, Galán-de-Mera A, Garbolino E, Gholizadeh H, Golub V, Haider S, Hatim MZ, Hérault B, Homeier J, Jandt U, Jansen F, Jentsch A, Kattge J, Kessler M, Khanina L, Kreft H, Küzmič F, Lenoir J, Moeslund JE, Mucina L, Naqinezhad A, Noroozi J, Pérez-Haase A, Phillips OL, Pillar VD, Rivas-Torres G, Ruprecht E, Sandel B, Schmidt M, Schmiedel U, Schnitzer S, Schrodt F, Šilc U, Sparrow B, Sporbert M, Stančić Z, Strohbach B, Svenning JC, Tang CQ, Tang Z, Vibrans AC, Violle C, Waller D, Wana D, Wang HF, Whitfeld T, Zizka G, Sabatini FM, and Bruelheide H
- Abstract
Plant communities are composed of species that differ both in functional traits and evolutionary histories. As species' functional traits partly result from their individual evolutionary history, we expect the functional diversity of communities to increase with increasing phylogenetic diversity. This expectation has only been tested at local scales and generally for specific growth forms or specific habitat types, for example, grasslands. Here we compare standardized effect sizes for functional and phylogenetic diversity among 1,781,836 vegetation plots using the global sPlot database. In contrast to expectations, we find functional diversity and phylogenetic diversity to be only weakly and negatively correlated, implying a decoupling between these two facets of diversity. While phylogenetic diversity is higher in forests and reflects recent climatic conditions (1981 to 2010), functional diversity tends to reflect recent and past climatic conditions (21,000 years ago). The independent nature of functional and phylogenetic diversity makes it crucial to consider both aspects of diversity when analysing ecosystem functioning and prioritizing conservation efforts., Competing Interests: Competing interests: The authors declare no competing interests., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2024
- Full Text
- View/download PDF
3. Multiple drivers of functional diversity in temperate forest understories: Climate, soil, and forest structure effects.
- Author
-
Chelli S, Bricca A, Tsakalos JL, Andreetta A, Bonari G, Campetella G, Carnicelli S, Cervellini M, Puletti N, Wellstein C, and Canullo R
- Subjects
- Climate, Plants, Microclimate, Soil, Forests
- Abstract
In macroecology, shifting from coarse- to local-scale explanatory factors is crucial for understanding how global change impacts functional diversity (FD). Plants possess diverse traits allowing them to differentially respond across a spectrum of environmental conditions. We aim to assess how macro- to microclimate, stand-scale measured soil properties, forest structure, and management type, influence forest understorey FD at the macroecological scale. Our study covers Italian forests, using thirteen predictors categorized into climate, soil, forest structure, and management. We analyzed five traits (i.e., specific leaf area, plant size, seed mass, belowground bud bank size, and clonal lateral spread) capturing independent functional dimensions to calculate the standardized effect size of functional diversity (SES-FD) for all traits (multi-trait) and for single traits. Multiple regression models were applied to assess the effect of predictors on SES-FD. We revealed that climate, soil, and forest structure significantly drive SES-FD of specific leaf area, plant size, seed mass, and bud bank. Forest management had a limited effect. However, differences emerged between herbaceous and woody growth forms of the understorey layer, with herbaceous species mainly responding to climate and soil features, while woody species were mainly affected by forest structure. Future warmer and more seasonal climate could reduce the diversity of resource economics, plant size, and persistence strategies of the forest understorey. Soil eutrophication and acidification may impact the diversity of regeneration strategies; canopy closure affects the diversity of above- and belowground traits, with a larger effect on woody species. Multifunctional approaches are vital to disentangle the effect of global changes on functional diversity since independent functional specialization axes are modulated by different drivers., Competing Interests: Declaration of competing interest We have no conflicts of interest to disclose., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Intraspecific variability of leaf form and function across habitat types.
- Author
-
Puglielli G, Bricca A, Chelli S, Petruzzellis F, Acosta ATR, Bacaro G, Beccari E, Bernardo L, Bonari G, Bolpagni R, Boscutti F, Calvia G, Campetella G, Cancellieri L, Canullo R, Carbognani M, Carboni M, Carranza ML, Castellani MB, Ciccarelli D, Coppi A, Cutini M, Dalla Vecchia A, Dalle Fratte M, de Francesco MC, De Frenne P, De Sanctis M, de Simone L, Di Cecco V, Fanelli G, Farris E, Ferrara A, Fenu G, Filibeck G, Gasperini C, Gargano D, Kindermann E, La Bella G, Lastrucci L, Lazzaro L, Maccherini S, Marignani M, Mugnai M, Naselli-Flores L, Passalacqua NG, Pavanetto N, Petraglia A, Rota F, Santoianni LA, Schettino A, Selvi F, Stanisci A, Trotta G, Vangansbeke P, Varricchione M, Vuerich M, Wellstein C, and Tordoni E
- Subjects
- Plant Leaves, Phenotype, Ecology, Ecosystem, Forests
- Abstract
Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses., (© 2024 The Authors. Ecology Letters published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
5. Traditional soil fertility management ameliorates climate change impacts on traditional Andean crops within smallholder farming systems.
- Author
-
Visscher AM, Vanek S, Huaraca J, Mendoza J, Ccanto R, Meza K, Olivera E, Scurrah M, Wellstein C, Bonari G, Zerbe S, and Fonte SJ
- Subjects
- Animals, Sheep, Agriculture methods, Crops, Agricultural, Farms, Fertilizers, Soil, Climate Change
- Abstract
Global changes, particularly rising temperatures, threaten food security in smallholder mountain communities by impacting the suitability of cultivation areas for many crops. Land-use intensification, associated with agrochemical use and tillage, threatens soil health and overall agroecosystem resilience. In the Andean region, farmers often cultivate crops at multiple elevations. Warming climates have led to a shift in cultivation upslope, but this is not feasible in many areas. Traditional soil fertility management practices together with a focus on traditional (orphan) crops offers promise to cope with rapid climate warming in the region. To understand the impacts of warming and changing nutrient management, we established two side-by-side experiments using the traditional Andean crops Oxalis tuberosa (Oca) and Lupinus mutabilis (Tarwi) at three elevations, each with two fertility treatments (organic and synthetic). Soil and climate data (i.e., temperature and precipitation) were collected throughout the growing season, and crop performance was evaluated through impacts on yield and other growth metrics (e.g., biomass, pest incidence). We used two-way ANOVA to assess the influence of site (elevation) and management type (organic vs. synthetic) on crop performance. Results indicated that warmer climates (i.e., lowest elevation) negatively impact the production and performance of O. tuberosa, but that organic fertilization (sheep manure) can help maintain crop yield and biomass production in warmer conditions relatively to synthetic nutrient inputs. In contrast, L. mutabilis showed accelerated growth in warmer conditions, but grain yield and biomass production were not significantly affected by site and showed no interaction with nutrient management. Our findings highlight that climate warming represents a serious threat to small-scale crop production in the Peruvian Andes and could cause severe declines in the production of locally important crops. Additionally, the continued reliance on traditional crops with organic inputs, instead of synthetic fertilizers, may help support agricultural productivity and resilience under climate change., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Climate regulation processes are linked to the functional composition of plant communities in European forests, shrublands, and grasslands.
- Author
-
Kambach S, Attorre F, Axmanová I, Bergamini A, Biurrun I, Bonari G, Carranza ML, Chiarucci A, Chytrý M, Dengler J, Garbolino E, Golub V, Hickler T, Jandt U, Jansen J, Jiménez-Alfaro B, Karger DN, Lososová Z, Rašomavičius V, Rūsiņa S, Sieber P, Stanisci A, Thuiller W, Welk E, Zimmermann NE, and Bruelheide H
- Subjects
- Plants, Climate, Climatic Processes, Biodiversity, Ecosystem, Grassland
- Abstract
Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types., (© 2024 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
7. Agroforestry enhances biological activity, diversity and soil-based ecosystem functions in mountain agroecosystems of Latin America: A meta-analysis.
- Author
-
Visscher AM, Meli P, Fonte SJ, Bonari G, Zerbe S, and Wellstein C
- Subjects
- Latin America, Agriculture methods, Biodiversity, Ecosystem, Soil
- Abstract
Mountain agroecosystems in Latin America provide multiple ecosystem functions (EFs) and products from global to local scales, particularly for the rural communities who depend on them. Agroforestry has been proposed as a climate-smart farming strategy throughout much of the region to help conserve biodiversity and enhance multiple EFs, especially in mountainous regions. However, large-scale synthesis on the potential of agroforestry across Latin America is lacking. To understand the potential impacts of agroforestry at the continental level, we conducted a meta-analysis examining the effects of agroforestry on biological activity and diversity (BIAD) and multiple EFs across mountain agroecosystems of Latin America. A total of 78 studies were selected based on a formalized literature search in the Web of Science. We analysed differences between (i) silvoarable systems versus cropland, (ii) silvopastoral systems versus pastureland, and (iii) agroforestry versus forest systems, based on response ratios. Response ratios were further used to understand how climate type, precipitation and soil properties (texture) influence key EFs (carbon sequestration, nutrient provision, erosion control, yield production) and BIAD in agroforestry systems. Results revealed that BIAD and EFs related to carbon sequestration and nutrient provisioning were generally higher in agroforestry systems (silvopastoral and silvoarable) compared to croplands and pasturelands without trees. However, the impacts of agroforestry systems on crop yields varied depending on the system considered (i.e., coffee vs. cereals), while forest systems generally provided greater levels of BIAD and EFs than agroforestry systems. Further analysis demonstrated that the impacts of agroforestry systems on BIAD and EFs depend greatly on climate type, soil, and precipitation. For example, silvoarable systems appear to generate the greatest benefits in arid or tropical climates, on sandier soils, and under lower precipitation regimes. Overall, our findings highlight the widespread potential of agroforestry systems to BIAD and multiple EFs across montane regions of Latin America., (© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.