1. Biosynthesis of C4-C8 3-Hydroxycarboxylic Acids from Glucose through the Inverted Fatty Acid β-Oxidation by Metabolically Engineered Escherichia coli .
- Author
-
Gulevich AY, Skorokhodova AY, and Debabov VG
- Subjects
- Escherichia coli Proteins metabolism, Escherichia coli Proteins genetics, Escherichia coli metabolism, Escherichia coli genetics, Glucose metabolism, Oxidation-Reduction, Fatty Acids metabolism, Fatty Acids biosynthesis, Metabolic Engineering, Carboxylic Acids metabolism
- Abstract
Inverted fatty acid β-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid β-oxidation by engineered E. coli strains. The notable accumulation of target compounds was achieved upon the strong constitutive expression of the genes atoB , fadA , fadB , fadE / fabI , and tesB , which code for the key enzymes catalysing reactions of aerobic fatty acid β-oxidation and thioesterase II, in strains devoid of mixed-acid fermentation pathways and lacking nonspecific thioesterase YciA. The best performing recombinants were able to synthesise up to 14.5 mM of 3-hydroxycarboxylic acids from glucose with a total yield of 0.34 mol/mol and a C4/C6/C8 ratio averaging approximately 63/28/9. The results provide a framework for the development of highly efficient strains and processes for the bio-based production of valuable 3-hydroxycarboxylates from renewable raw materials.
- Published
- 2024
- Full Text
- View/download PDF