Background: A liquid biopsy is a test that evaluates the status of a disease by analyzing a sample of bodily fluid, most commonly blood. In recent years, there has been progress in the development and clinical application of liquid biopsy methods to identify blood-based, tumor-specific biomarkers for many cancer types. However, the implementation of these technologies to aid in the treatment of patients who have a sarcoma remains behind other fields of cancer medicine. For this study, we chose to evaluate a sarcoma liquid biopsy based on circulating tumor DNA (ctDNA). All human beings have normal cell-free DNA (cfDNA) circulating in the blood. In contrast with cfDNA, ctDNA is genetic material present in the blood stream that is derived from a tumor. ctDNA carries the unique genomic fingerprint of the tumor with changes that are not present in normal circulating cfDNA. A successful ctDNA liquid biopsy must be able to target these tumor-specific genetic alterations. For instance, epidermal growth factor receptor (EGFR) mutations are common in lung cancers, and ctDNA liquid biopsies are currently in clinical use to evaluate the status of disease in patients who have a lung cancer by detecting EGFR mutations in the blood. As opposed to many carcinomas, sarcomas do not have common recurrent mutations that could serve as the foundation to a ctDNA liquid biopsy. However, many sarcomas have structural changes to their chromosomes, including gains and losses of portions or entire chromosomes, known as copy number alterations (CNAs), that could serve as a target for a ctDNA liquid biopsy. Murine double minute 2 (MDM2) amplification in select lipomatous tumors or parosteal osteosarcoma is an example of a CNA due to the presence of extra copies of a segment of the long arm of chromosome 12. Since a majority of sarcomas demonstrate a complex karyotype with numerous CNAs, a blood-based liquid biopsy strategy that searches for these CNAs may be able to detect the presence of sarcoma ctDNA. Whole-genome sequencing (WGS) is a next-generation sequencing technique that evaluates the entire genome. The depth of coverage of WGS refers to how detailed the sequencing is, like higher versus lower power on a microscope. WGS can be performed with high-depth sequencing (that is, > 60×), which can detect individual point mutations, or low-depth sequencing (that is, 0.1× to 5×), referred to as low-passage whole-genome sequencing (LP-WGS), which may not detect individual mutations but can detect structural chromosomal changes including gains and losses (that is, CNAs). While similar strategies have shown favorable early results for specific sarcoma subtypes, LP-WGS has not been evaluated for applicability to the broader population of patients who have a sarcoma., Questions/purposes: Does an LP-WGS liquid biopsy evaluating for CNAs detect ctDNA in plasma samples from patients who have sarcomas representing a variety of histologic subtypes?, Methods: This was a retrospective study conducted at a community-based, tertiary referral center. Nine paired (plasma and formalin-fixed paraffin-embedded [FFPE] tissue) and four unpaired (plasma) specimens from patients who had a sarcoma were obtained from a commercial biospecimen bank. Three control specimens from individuals who did not have cancer were also obtained. The paired and unpaired specimens from patients who had a sarcoma represented a variety of sarcoma histologic subtypes. cfDNA was extracted, amplified, and quantified. Libraries were prepared, and LP-WGS was performed using a NextSeq 500 next-generation sequencing machine at a low depth of sequencing coverage (∼1×). The ichorCNA bioinformatics algorithm, which was designed to detect CNAs from low-depth genomic sequencing data, was used to analyze the data. In contrast with the gold standard for diagnosis in the form of histopathologic analysis of a tissue sample, this test does not discriminate between sarcoma subtypes but detects the presence of tumor-derived CNAs within the ctDNA in the blood that should not be present in a patient who does not have cancer. The liquid biopsy was positive for the detection of cancer if the ichorCNA algorithm detected the presence of ctDNA. The algorithm was also used to quantitatively estimate the percent ctDNA within the cfDNA. The concentration of ctDNA was then calculated from the percent ctDNA relative to the total concentration of cfDNA. The CNAs of the paired FFPE tissue and plasma samples were graphically visualized using aCNViewer software., Results: This LP-WGS liquid biopsy detected ctDNA in 9 of 13 of the plasma specimens from patients with a sarcoma. The other four samples from patients with a sarcoma and all serum specimens from patients without cancer had no detectable ctDNA. Of those 9 patients with positive liquid biopsy results, the percent ctDNA ranged from 6% to 11%, and calculated ctDNA quantities were 0.04 to 5.6 ng/mL, which are levels to be expected when ctDNA is detectable., Conclusion: In this small pilot study, we were able to detect sarcoma ctDNA with an LP-WGS liquid biopsy searching for CNAs in the plasma of most patients who had a sarcoma representing a variety of histologic subtypes., Clinical Relevance: These results suggest that an LP-WGS liquid biopsy evaluating for CNAs to identify ctDNA may be more broadly applicable to the population of patients who have a sarcoma than previously reported in studies focusing on specific subtypes. Large prospective clinical trials that gather samples at multiple time points during the process of diagnosis, treatment, and surveillance will be needed to further assess whether this technique can be clinically useful. At our institution, we are in the process of developing a large prospective clinical trial for this purpose., Competing Interests: Each author certifies that there are no funding or commercial associations (consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article related to the author or any immediate family members. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request., (Copyright © 2024 by the Association of Bone and Joint Surgeons.)