Objectives: We aimed to evaluate the performance of multiple large language models (LLMs) in data extraction from unstructured and semi-structured electronic health records., Methods: 50 synthetic medical notes in English, containing a structured and an unstructured part, were drafted and evaluated by domain experts, and subsequently used for LLM-prompting. 18 LLMs were evaluated against a baseline transformer-based model. Performance assessment comprised four entity extraction and five binary classification tasks with a total of 450 predictions for each LLM. LLM-response consistency assessment was performed over three same-prompt iterations., Results: Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b exhibited an excellent overall accuracy >0.98 (0.995, 0.988, 0.988, 0.988, 0.986, 0.982, 0.982, and 0.982, respectively), significantly higher than the baseline RoBERTa model (0.742). Claude 2.0, Claude 2.1, Claude 3.0 Opus, PaLM 2 chat-bison, GPT 4, Claude 3.0 Sonnet and Llama 3-70b showed a marginally higher and Gemini Advanced a marginally lower multiple-run consistency than the baseline model RoBERTa (Krippendorff's alpha value 1, 0.998, 0.996, 0.996, 0.992, 0.991, 0.989, 0.988, and 0.985, respectively)., Discussion: Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat bison and Llama 3-70b performed the best, exhibiting outstanding performance in both entity extraction and binary classification, with highly consistent responses over multiple same-prompt iterations. Their use could leverage data for research and unburden healthcare professionals. Real-data analyses are warranted to confirm their performance in a real-world setting., Conclusion: Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b seem to be able to reliably extract data from unstructured and semi-structured electronic health records. Further analyses using real data are warranted to confirm their performance in a real-world setting., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.)