1. Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades.
- Author
-
Zhu, Shixing, Li, Yan, Yan, Junyang, and Zhang, Chao
- Subjects
GAS turbine blades ,GAS turbines ,HEAT transfer ,REYNOLDS number ,FILM flow ,JET impingement ,SWIRLING flow - Abstract
As the inlet temperature of the gas turbine exceeds the high temperature limit of the blade materials, efficient leading edge cooling technologies are crucial for the further development of gas turbines. Therefore, this paper reviews the research progress on external cooling technology, internal cooling technology, and composite cooling technology for gas turbine rotating blade leading edge cooling. It focuses on the impact of the geometric shape, arrangement, and flow parameters of film cooling holes on external cooling performance, the influence of jet hole design, configuration, crossflow, ribs on internal cooling efficiency, and the characteristics and influencing factors of composite cooling technologies are also discussed. Among the most promising composite cooling techniques, the impingement jet film composite cooling technology and swirl film composite cooling technology stand out. For impingement jet film composite cooling technology, this paper explores the effects of blowing ratio, nozzle parameters, jet hole characteristics, and flow field parameters on the overall cooling performance of the rotating blade leading edge. Impingement jet film composite cooling technology has been shown to significantly improve the cooling performance of the leading edge compared to traditional single cooling techniques. For applications requiring large area cooling or maintaining film integrity, swirl film composite cooling technology not only enhances heat transfer efficiency but also improves the uniformity of heat transfer. The design of swirl nozzles, coolant flow rate, Reynolds number, and jet temperature all have significant effects on the heat transfer efficiency of swirl film composite cooling. To further advance the development of gas turbine rotating blade leading edge cooling technologies, it is recommended to focus on the study of film composite cooling techniques, particularly investigating the effects of various parameters of impingement, swirl on composite cooling performance. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF