1. Dark Galactic subhalos and the Gaia snail
- Author
-
Gilman, Daniel, Bovy, Jo, Frankel, Neige, and Benson, Andrew
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gaia has revealed a clear signal of disequilibrium in the solar neighborhood in the form of a spiral (or snail) feature in the vertical phase-space distribution. We investigate the possibility that this structure emerges from ongoing perturbations by dark $\left(10^{6} M_{\odot} - 10^8 M_{\odot}\right)$ Galactic subhalos. We develop a probabilistic model for generating subhalo orbits based on a semi-analytic model of structure formation, and combine this framework with an approximate prescription for calculating the response of the disk to external perturbations. We also develop a phenomenological treatment for the diffusion of phase-space spirals caused by gravitational scattering between stars and giant molecular clouds, a process that erases the kinematic signatures of old ($t \gtrsim 0.6$ Gyr) events. Perturbations caused by dark subhalos are, on average, orders of magnitude weaker than those caused by luminous satellite galaxies, but the ubiquity of dark halos predicted by cold dark matter makes them a more probable source of strong perturbation to the dynamics of the solar neighborhood. Dark subhalos alone do not cause enough disturbance to explain the Gaia snail, but they excite fluctuations of $\sim 0.1-0.5 \ \rm{km} \ \rm{s^{-1}}$ in the mean vertical velocity of stars near the Galactic midplane that should persist to the present day. Subhalos also produce correlations between vertical frequency and orbital angle that could be mistaken as originating from a single past disturbance. Our results motivate investigation of the Milky Way's dark satellites by characterizing their kinematic signatures in phase-space spirals across the Galaxy., Comment: prepared for submission to ApJ, comments welcome
- Published
- 2024