1. Drug combination assays using Caenorhabditis elegans as a model system.
- Author
-
Hernando G and Bouzat C
- Abstract
The C. elegans drug combination assay evaluates the effects of drug combinations in the nematode Caenorhabditis elegans, serving as a valuable tool to assess the efficacy of pharmaceutical agents and natural compounds. Using C. elegans as a model organism, this method allows for the efficient screening of the combined effects of different drugs and evaluation of synergistic effects in drug combinations, which reduces the risk of developing drug resistance. Combination therapy, involving commercial drugs, new agents, or natural products, broadens treatment effectiveness by targeting multiple pathways, effectively managing complex diseases with minimized side effects. The method focuses on discovering effective drug combinations, such as anthelmintic drugs, streamlining early-stage drug discovery to save time and resources. Additionally, its versatility allows for application across most areas of pharmacology and toxicology, extending its usefulness beyond anthelmintic treatments. In the experiments, synchronized worms are exposed to different drug concentrations to evaluate behavioral changes, mostly alterations in worm locomotion. Concentration-response curves for changes in behavior are generated and EC
50 or IC50 values determined for the individual drugs. To determine whether the effects of a drug combination are synergistic, additive, or antagonistic, at least three different concentration ratios must be tested. These combinations are then analyzed using specialized drug combination analysis software. This methodology ensures consistent and precise outcomes and evaluates drug impacts on worm behavior parameters crucial for effective pharmacological activity. In conclusion, the C. elegans drug combination assay provides critical insights for developing successful market formulations applicable across a wide range of pharmacological treatments. Its ability to efficiently screen for synergistic, additive, or antagonistic effects makes it a valuable tool for identifying effective therapeutic strategies, potentially reducing drug resistance and improving treatment outcomes in various medical and toxicological fields., Competing Interests: Declaration of competing interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2025 Elsevier Inc. All rights reserved.)- Published
- 2025
- Full Text
- View/download PDF