1. The effective cone conjecture for Calabi--Yau pairs
- Author
-
Gachet, Cécile, Lin, Hsueh-Yung, Stenger, Isabel, and Wang, Long
- Subjects
Mathematics - Algebraic Geometry - Abstract
We formulate an {\it effective cone conjecture} for klt Calabi--Yau pairs $(X,\Delta)$, pertaining to the structure of the cone of effective divisors $\mathrm{Eff}(X)$ modulo the action of the subgroup of pseudo-automorphisms $\mathrm{PsAut}(X,\Delta)$. Assuming the existence of good minimal models in dimension $\dim(X)$, known to hold in dimension up to $3$, we prove that the effective cone conjecture for $(X,\Delta)$ is equivalent to the Kawamata--Morrison--Totaro movable cone conjecture for $(X,\Delta)$. As an application, we show that the movable cone conjecture unconditionally holds for the smooth Calabi--Yau threefolds introduced by Schoen and studied by Namikawa, Grassi and Morrison. We also show that for such a Calabi--Yau threefold $X$, all of its minimal models, apart from $X$ itself, have rational polyhedral nef cones., Comment: 31 pages
- Published
- 2024