1. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy.
- Author
-
Wooden B, Beenken A, Martinelli E, Saida K, Knob AL, Ke J, Pisani I, Jin G, Lane B, Mitrotti A, Colby E, Lim TY, Guglielmi F, Osborne AJ, Ahram DF, Wang C, Armand F, Zanoni F, Bomback AS, Delsante M, Appel GB, Ferrari MRA, Martino J, Sahdeo S, Breckenridge D, Petrovski S, Paul DS, Hall G, Magistroni R, Murtas C, Feriozzi S, Rampino T, Esposito P, Helmuth ME, Sampson MG, Kretzler M, Kiryluk K, Shril S, Gesualdo L, Maggiore U, Fiaccadori E, Gbadegesin R, Santoriello D, D'Agati VD, Saleem MA, Gharavi AG, Hildebrandt F, Pollak MR, Goldstein DB, and Sanna-Cherchi S
- Abstract
Background: Understanding the genetic basis of human diseases has become integral to drug development and precision medicine. Recent advancements have enabled the identification of molecular pathways driving diseases, leading to targeted treatment strategies. The increasing investment in rare diseases by the biotech industry underscores the importance of genetic evidence in drug discovery and approval processes. Here we studied a monogenic Mendelian kidney disease, TRPC6-associated podocytopathy (TRPC6-AP), to present its natural history, genetic spectrum, and clinicopathological associations in a large cohort of patients with causal variants in TRPC6, in order to help define the specific features of disease and further facilitate drug development and clinical trials design., Methods: the study involved 64 individuals from 39 families with TRPC6 causal missense variants. Clinical data, including age of onset, laboratory results, response to treatment, kidney biopsy findings, and genetic information, were collected from multiple centers nationally and internationally. Exome or targeted sequencing was performed and variant classification was based on strict criteria. Structural and functional analyses of TRPC6 variants were conducted to understand their impact on protein function. In depth re-analysis of light and electron microscopy specimens for 9 available kidney biopsies was conducted to identify pathological features and correlates of TRPC6-AP., Results: Large-scale sequencing data did not support causality for TRPC6 protein-truncating variants. We identified 21 unique TRPC6 missense variants, clustering in three distinct regions of the protein, and with different effects on TRPC6 3D protein structure. Kidney biopsy analysis revealed FSGS patterns of injury in most cases, along with distinctive podocyte features including diffuse foot process effacement and swollen cell bodies. The majority of patients presented in adolescence or early adulthood but with ample variation (average 22, SD ± 14 years), with frequent progression to kidney failure but with variability in time between presentation and ESKD., Conclusions: This study provides insights into the genetic spectrum, clinicopathological associations, and natural history of TRPC6-AP., (Copyright © 2024 by the American Society of Nephrology.)
- Published
- 2024
- Full Text
- View/download PDF