1. Supersymmetric Integrable Hamiltonian Systems, Conformal Lie Superalgebras K(1, N = 1, 2, 3), and Their Factorized Semi-Supersymmetric Generalizations
- Author
-
Anatolij K. Prykarpatski, Volodymyr M. Dilnyi, Petro Ya. Pukach, and Myroslava I. Vovk
- Subjects
supersymmetry ,semi-supersymmetry ,supercircle loop diffeomorphism group ,coadjoint action ,Lax integrability ,loop Lie superalgebra ,Mathematics ,QA1-939 - Abstract
We successively reanalyzed modern Lie-algebraic approaches lying in the background of effective constructions of integrable super-Hamiltonian systems on functional N=1,2,3- supermanifolds, possessing rich supersymmetries and endowed with suitably related compatible Poisson structures. As an application, we describe countable hierarchies of new nonlinear Lax-type integrable N=2,3-semi-supersymmetric dynamical systems and constructed their central extended superconformal Lie superalgebra K(1|3) and its finite-dimensional coadjoint orbits, generated by the related Casimir functionals. Moreover, we generalized these results subject to the suitably factorized super-pseudo-differential Lax-type representations and present the related super-Poisson brackets and compatible suitably factorized Hamiltonian superflows. As an interesting point, we succeeded in the algorithmic construction of integrable super-Hamiltonian factorized systems generated by Casimir invariants of the centrally extended super-pseudo-differential operator Lie superalgebras on the N=1,2,3-supercircle.
- Published
- 2024
- Full Text
- View/download PDF