5 results on '"Iacopetti, Giovanni"'
Search Results
2. Trait–micro‐environment relationships of forest herb communities across Europe.
- Author
-
Govaert, Sanne, Meeussen, Camille, Vanneste, Thomas, Bollmann, Kurt, Brunet, Jörg, Calders, Kim, Cousins, Sara A. O., De Pauw, Karen, Diekmann, Martin, Graae, Bente J., Hedwall, Per‐Ola, Iacopetti, Giovanni, Lenoir, Jonathan, Lindmo, Sigrid, Orczewska, Anna, Ponette, Quentin, Plue, Jan, Sanczuk, Pieter, Selvi, Federico, and Spicher, Fabien
- Subjects
COMMUNITY forests ,FOREST management ,TEMPERATE forests ,DECIDUOUS forests ,PLANT variation ,EDGE effects (Ecology) ,DEAD trees - Abstract
Aim: The microclimate and light conditions on the forest floor are strongly modified by tree canopies. Therefore, we need to better consider the micro‐environment when quantifying trait–environment relationships for forest understorey plants. Here, we quantify relationships between micro‐environmental conditions and plant functional traits at the community level, including intraspecific trait variation, and their relationship with microclimate air temperature, light and soil properties. Location: Deciduous temperate forests across Europe. Time period: 2018. Major taxa studied: Herbaceous vegetation. Methods: We sampled 225 plots across 15 regions along four complementary gradients capturing both macro‐ and microclimatic conditions including latitude, elevation, forest management and distance to forest edges. We related the community‐weighted mean of five plant functional traits (plant height, specific leaf area [SLA], plant carbon [C], plant nitrogen [N] and plant C:N ratio) across 150 vascular plant species to variation in local microclimate air temperature, light and soil properties. We tested the effect of accounting for intraspecific variation in trait–environment relationships and performed variation partitioning to identify major drivers of trait variation. Results: Microclimate temperature, light availability and soil properties were all important predictors of community‐weighted mean functional traits. When light availability and variation in temperature were higher, the herb community often consisted of taller plants with a higher C:N ratio. In more productive environments (e.g. with high soil nitrogen availability), the community was dominated by individuals with resource‐acquisitive traits: high SLA and N but low C:N. Including intraspecific trait variation increased the strength of the trait–micro‐environment relationship, and increased the importance of light availability. Main conclusions: The trait–environment relationships were much stronger when the micro‐environment and intraspecific trait variation were considered. By locally steering light availability and temperature, forest managers can potentially impact the functional signature of the forest herb‐layer community. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Using warming tolerances to predict understory plant responses to climate change.
- Author
-
Wei, Liping, Sanczuk, Pieter, De Pauw, Karen, Caron, Maria Mercedes, Selvi, Federico, Hedwall, Per‐Ola, Brunet, Jörg, Cousins, Sara A. O., Plue, Jan, Spicher, Fabien, Gasperini, Cristina, Iacopetti, Giovanni, Orczewska, Anna, Uria‐Diez, Jaime, Lenoir, Jonathan, Vangansbeke, Pieter, and De Frenne, Pieter
- Subjects
UNDERSTORY plants ,FLOWERING of plants ,CLIMATE change ,PLANT performance ,TEMPERATE forests ,PLANT species - Abstract
Climate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross‐continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N–61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Effects of experimental warming at the microhabitat scale on oak leaf traits and insect herbivory across a contrasting environmental gradient.
- Author
-
Moreira, Xoaquín, Abdala‐Roberts, Luis, Lago‐Núñez, Beatriz, Cao, Ana, De Pauw, Karen, De Ro, Annelore, Gasperini, Cristina, Hedwall, Per‐Ola, Iacopetti, Giovanni, Lenoir, Jonathan, Meeussen, Camille, Plue, Jan, Sanczuk, Pieter, Selvi, Federico, Spicher, Fabien, Vanden Broeck, An, and De Frenne, Pieter
- Subjects
ECOLOGICAL niche ,DURMAST oak ,HYDROXYCINNAMIC acids ,PHENOLS ,INSECTS - Abstract
Forest microclimatic variation can result in substantial temperature differences at local scales with concomitant impacts on plant defences and herbivory. Such microclimatic effects, however, may differ across abiotically contrasting sites depending on background environmental differences. To test these cross‐scale effects shaping species ecological and evolutionary responses, we experimentally tested the effects of aboveground microhabitat warming on insect leaf herbivory and leaf defences (toughness, phenolic compounds) for saplings of sessile oak Quercus petraea across two abiotically contrasting sites spanning 9° latitude. We found higher levels of herbivory at the low‐latitude site, but leaf traits showed mixed patterns across sites. Toughness and condensed tannins were higher at the high‐latitude site, whereas hydrolysable tannins and hydroxycinnamic acids were higher at the low‐latitude site. At the microhabitat scale, experimental warming increased herbivory, but did not affect any of the measured leaf traits. Condensed tannins were negatively correlated with herbivory, suggesting that they drive variation in leaf damage at both scales. Moreover, the effects of microhabitat warming on herbivory and leaf traits were consistent across sites, i.e. effects at the microhabitat scale play out similarly despite variation in factors acting at broader scales. These findings together suggest that herbivory responds to both microhabitat (warming) and broad‐scale environmental factors, whereas leaf traits appear to respond more to environmental factors operating at broad scales (e.g. macroclimatic factors) than to warming at the microhabitat scale. In turn, leaf secondary chemistry (tannins) appears to drive both broad‐scale and microhabitat‐scale variation in herbivory. Further studies are needed using reciprocal transplants with more populations across a greater number of sites to tease apart plant plasticity from genetic differences contributing to leaf trait and associated herbivory responses across scales and, in doing so, better understand the potential for dynamics such as local adaptation and range expansion or contraction under shifting climatic regimes. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Extreme climatic events, biotic interactions and species-specific responses drive tree crown defoliation and mortality in Italian forests.
- Author
-
Bussotti, Filippo, Papitto, Giancarlo, Di Martino, Domenico, Cocciufa, Cristiana, Cindolo, Claudia, Cenni, Enrico, Bettini, Davide, Iacopetti, Giovanni, Ghelardini, Luisa, Moricca, Salvatore, Panzavolta, Tiziana, Bracalini, Matteo, and Pollastrini, Martina
- Abstract
The frequency of forest disturbances has increased in recent years, provoking widespread defoliation, crown dieback and tree mortality. The ICP Forests monitoring network offers a unique platform for observing the impacts on forests of heatwaves, droughts and other extreme climatic events, as well as the trends of defoliation and mortality. The Italian ICP Forests Level I network consists of 261 permanent plots where tree crown defoliation and damage symptoms are assessed visually each year by well-trained crews of the Corpo Forestale dello Stato (2001-2016) and the Carabinieri Forestale from 2017 onward. This paper aims to assess the main tree species' responses, in terms of defoliation and mortality, to severe climatic events. The results are discussed in relation to species-specific physiological behaviour and bioclimatic regions. A significant trend toward increasing defoliation and mortality has been observed since 2010 in both conifers and broadleaves. Conifers (especially Picea abies), which are largely diffuse in the Alpine regions, have suffered from bark beetle outbreaks due to severe windstorms (such as Vaia in 2018) and recurrent dry years. In the temperate regions, characterised by deciduous broadleaved trees, the most relevant defoliation events coincided with the driest and hottest years, with low relative humidity (2012, 2017 and 2021-2022), only partially recovering in the subsequent years. Among them, Fagus sylvatica and Quercus cerris, along with increased defoliation, showed symptoms caused by fungi of the genus Biscogniauxia, causal agents of "charcoal canker", in less favourable site conditions. Quercus pubescens was the most resilient species, able to restore its crown after defoliation. The Mediterranean forests, with evergreen broadleaved species, showed no significant trends but were impacted at the most drought-prone coastal sites. The findings evidenced that the current ICP Forests network in Italy represents a fundamental infrastructure for monitoring impacts and trends connected to climate change and species-specific responses. A local intensification of the grid would help to capture under-represented species or ecological conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.