1. Dietary Probiotic Pediococcus acidilactici GKA4, Dead Probiotic GKA4, and Postbiotic GKA4 Improves Cisplatin-Induced AKI by Autophagy and Endoplasmic Reticulum Stress and Organic Ion Transporters.
- Author
-
Lin JG, Jiang WP, Tsai YS, Lin SW, Chen YL, Chen CC, and Huang GJ
- Subjects
- Animals, Mice, Male, Kidney drug effects, Kidney pathology, Kidney metabolism, Disease Models, Animal, Organic Anion Transporters metabolism, Apoptosis drug effects, Cisplatin adverse effects, Probiotics pharmacology, Probiotics administration & dosage, Autophagy drug effects, Endoplasmic Reticulum Stress drug effects, Pediococcus acidilactici, Acute Kidney Injury chemically induced, Acute Kidney Injury metabolism, Endoplasmic Reticulum Chaperone BiP
- Abstract
Background/objectives: Acute kidney injury (AKI) syndrome is distinguished by a quick decline in renal excretory capacity and usually diagnosed by the presence of elevated nitrogen metabolism end products and/or diminished urine output. AKI frequently occurs in hospital patients, and there are no existing specific treatments available to diminish its occurrence or expedite recovery. For an extended period in the food industry, Pediococcus acidilactici has been distinguished by its robust bacteriocin production, effectively inhibiting pathogen growth during fermentation and storage., Methods: In this study, the aim is to assess the effectiveness of P. acidilactici GKA4, dead probiotic GKA4, and postbiotic GKA4 against cisplatin-induced AKI in an animal model. The experimental protocol involves a ten-day oral administration of GKA4, dead probiotic GKA4, and postbiotic GKA4 to mice, with a cisplatin intraperitoneal injection being given on the seventh day to induce AKI., Results: The findings indicated the significant alleviation of the renal histopathological changes and serum biomarkers of GKA4, dead probiotic GKA4, and postbiotic GKA4 in cisplatin-induced nephrotoxicity. GKA4, dead probiotic GKA4, and postbiotic GKA4 elevated the expression levels of HO-1 and decreased the expression levels of Nrf-2 proteins. In addition, the administration of GKA4, dead probiotic GKA4, and postbiotic GKA4 significantly reduced the expression of apoptosis-related proteins (Bax, Bcl-2, and caspase 3), autophagy-related proteins (LC3B, p62, and Beclin1), and endoplasmic reticulum (ER) stress-related proteins (GRP78, PERK, ATF-6, IRE1, CHOP, and Caspase 12) in kidney tissues. Notably, GKA4, dead probiotic GKA4, and postbiotic GKA4 also upregulated the levels of proteins related to organic anion transporters and organic cation transporters., Conclusions: Overall, the potential therapeutic benefits of GKA4, dead probiotic GKA4, and postbiotic GKA4 are significant, particularly after cisplatin treatment. This is achieved by modulating apoptosis, autophagy, ER stress, and transporter proteins to alleviate oxidative stress.
- Published
- 2024
- Full Text
- View/download PDF