8 results on '"Klochkov V"'
Search Results
2. Nanocrystalline cerium dioxide reduces recrystallization in cryopreservation solutions.
- Author
-
Bobrova O, Falko O, Polyakova A, Klochkov V, Faltus M, and Chizhevskiy V
- Abstract
Nanocrystalline cerium dioxide is able to protect living cells from oxidative stress under the influence of various stress factors, in particular under the one of low temperatures. This study investigates the phase-structural transformations in aqueous solutions containing CeO
2 nanoparticles (NPs) and their impact on the cryopreservation process. Differential scanning calorimetry and thermomechanical analysis were used to analyse the phase transitions in aqueous suspensions of CeO2 NPs and aqueous solutions of the cryoprotectant dimethyl sulfoxide (Me2 SO) with CeO2 NPs. Various concentrations of CeO2 NPs were tested to observe their effects on the crystallization and melting behaviours. The addition of CeO2 NPs significantly altered the temperatures and enthalpies of melting and crystallization in water. Low concentrations of CeO2 NPs promoted crystallization, while higher concentrations inhibited it, reducing supercooling and recrystallization during thawing. In Me2 SO solutions, CeO2 NPs raised the glass transition temperature and affected the recrystallization process, with higher concentrations leading to more pronounced vitrification and reduced recrystallization. We also investigated the regularities of the effect of CeO2 NPs on phase transitions in combined cryoprotective media with Ham's F12, fetal bovine serum and Me2 SO, which can be used in future to design the cryopreservation protocols. In the complex media, CeO2 NPs decreased the metastability and altered eutectic crystallization patterns, indicating potential cryoprotective effects. In conclusion, CeO2 NPs modulate the thermophysical properties of cryoprotective solutions, enhancing vitrification and reducing recrystallization, which could improve cryopreservation efficiency. Optimizing NP concentrations is crucial for practical applications in cryopreservation., Competing Interests: Declaration of competing interest None., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
3. Methylglyoxal: A Key Factor for Diabetic Retinopathy and Its Effects on Retinal Damage.
- Author
-
Klochkov V, Chan CM, and Lin WW
- Abstract
Background: Diabetic retinopathy is the most common retinal vascular disease, affecting the retina's blood vessels and causing chronic inflammation, oxidative stress, and, ultimately, vision loss. Diabetes-induced elevated glucose levels increase glycolysis, the main methylglyoxal (MGO) formation pathway. MGO is a highly reactive dicarbonyl and the most rapid glycation compound to form endogenous advanced glycation end products (AGEs). MGO can act both intra- and extracellularly by glycating molecules and activating the receptor for AGEs (RAGE) pathway. Conclusions : This review summarizes the sources of MGO formation and its actions on various cell pathways in retinal cells such as oxidative stress, glycation, autophagy, ER stress, and mitochondrial dysfunction. Finally, the detoxification of MGO by glyoxalases is discussed.
- Published
- 2024
- Full Text
- View/download PDF
4. GdVO 4 :Eu 3+ and LaVO 4 :Eu 3+ Nanoparticles Exacerbate Oxidative Stress in L929 Cells: Potential Implications for Cancer Therapy.
- Author
-
Kot Y, Klochkov V, Prokopiuk V, Sedyh O, Tryfonyuk L, Grygorova G, Karpenko N, Tomchuk O, Kot K, Onishchenko A, Yefimova S, and Tkachenko A
- Subjects
- Animals, Mice, Nanoparticles chemistry, Cell Line, Neoplasms drug therapy, Neoplasms metabolism, Neoplasms pathology, Hydrogen Peroxide pharmacology, Endoplasmic Reticulum Stress drug effects, Metal Nanoparticles chemistry, Gadolinium chemistry, Gadolinium pharmacology, Oxidative Stress drug effects, Reactive Oxygen Species metabolism, Apoptosis drug effects
- Abstract
The therapeutic potential of redox-active nanoscale materials as antioxidant- or reactive oxygen species (ROS)-inducing agents was intensely studied. Herein, we demonstrate that the synthesized and characterized GdVO
4 :Eu3+ and LaVO4 :Eu3+ nanoparticles, which have been already shown to have redox-active, anti-inflammatory, antibacterial, and wound healing properties, both in vitro and in vivo, worsen oxidative stress of L929 cells triggered by hydrogen peroxide or tert -butyl hydroperoxide (tBuOOH) at the concentrations that are safe for intact L929 cells. This effect was observed upon internalization of the investigated nanosized materials and is associated with the cleavage of caspase-3 and caspase-9 without recruitment of caspase-8. Such changes in the caspase cascade indicate activation of the intrinsic caspase-9-dependent mitochondrial but not the extrinsic death, receptor-mediated, and caspase-8-dependent apoptotic pathway. The GdVO4 :Eu3+ and LaVO4 :Eu3+ nanoparticle-induced apoptosis of oxidatively compromised L929 cells is mediated by ROS overgeneration, Ca2+ overload, endoplasmic reticulum stress-associated JNK (c-Jun N-terminal kinase), and DNA damage-inducible transcript 3 (DDIT3). Our findings demonstrate that GdVO4 :Eu3+ and LaVO4 :Eu3+ nanoparticles aggravate the oxidative stress-induced damage to L929 cells, indicating that they might potentially be applied as anti-cancer agents.- Published
- 2024
- Full Text
- View/download PDF
5. Calcium ions do not influence the Aβ(25-35) triggered morphological changes of lipid membranes.
- Author
-
Kurakin S, Ivankov O, Dushanov E, Murugova T, Ermakova E, Efimov S, Mukhametzyanov T, Smerdova S, Klochkov V, Kuklin A, and Kučerka N
- Subjects
- Lipid Bilayers chemistry, Lipid Bilayers metabolism, 1,2-Dipalmitoylphosphatidylcholine chemistry, Ions chemistry, Protein Structure, Secondary, Scattering, Small Angle, Unilamellar Liposomes chemistry, Unilamellar Liposomes metabolism, Circular Dichroism, Amyloid beta-Peptides chemistry, Calcium chemistry, Calcium metabolism, Peptide Fragments chemistry
- Abstract
We have studied the effect of calcium ions (Ca
2+ ) at various concentrations on the structure of lipid vesicles in the presence of amyloid-beta peptide Aβ(25-35). In particular, we have investigated the influence of calcium ions on the formation of recently documented bicelle-like structures (BLSs) emerged as a result of Aβ(25-35) triggered membrane disintegration. First, we have shown by using small-angle X-ray and neutron scattering that peptide molecules rigidify the lipid bilayer of gel phase DPPC unilamellar vesicles (ULVs), while addition of the calcium ions to the system hinders this effect of Aβ(25-35). Secondly, the Aβ(25-35) demonstrates a critical peptide concentration at which the BLSs reorganize from ULVs due to heating and cooling the samples through the lipid main phase transition temperature (Tm ). However, addition of calcium ions does not affect noticeably the Aβ-induced formation of BLSs and their structural parameters, though the changes in peptide's secondary structure, e.g. the increased α-helix fraction, has been registered by circular dichroism spectroscopy. Finally, according to31 P nuclear magnetic resonance (NMR) measurements, calcium ions do not affect the lipid-peptide arrangement in BLSs and their ability to align in the magnetic field of NMR spectrometer. The influences of various concentrations of calcium ions on the lipid-peptide interactions may prove biologically important because their local concentrations vary widely in in-vivo conditions. In the present work, calcium ions were investigated as a possible tool aimed at regulating the lipid-peptide interactions that demonstrated the disruptive effect of Aβ(25-35) on lipid membranes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
6. NLRX1 Inhibits LPS-Induced Microglial Death via Inducing p62-Dependent HO-1 Expression, Inhibiting MLKL and Activating PARP-1.
- Author
-
Huang YL, Huang DY, Klochkov V, Chan CM, Chen YS, and Lin WW
- Abstract
The activation of microglia and the production of cytokines are key factors contributing to progressive neurodegeneration. Despite the well-recognized neuronal programmed cell death regulated by microglial activation, the death of microglia themselves is less investigated. Nucleotide-binding oligomerization domain, leucine-rich repeat-containing X1 (NLRX1) functions as a scaffolding protein and is involved in various central nervous system diseases. In this study, we used the SM826 microglial cells to understand the role of NLRX1 in lipopolysaccharide (LPS)-induced cell death. We found LPS-induced cell death is blocked by necrostatin-1 and zVAD. Meanwhile, LPS can activate poly (ADP-ribose) polymerase-1 (PARP-1) to reduce DNA damage and induce heme oxygenase (HO)-1 expression to counteract cell death. NLRX1 silencing and PARP-1 inhibition by olaparib enhance LPS-induced SM826 microglial cell death in an additive manner. Less PARylation and higher DNA damage are observed in NLRX1-silencing cells. Moreover, LPS-induced HO-1 gene and protein expression through the p62-Keap1-Nrf2 axis are attenuated by NLRX1 silencing. In addition, the Nrf2-mediated positive feedback regulation of p62 is accordingly reduced by NLRX1 silencing. Of note, NLRX1 silencing does not affect LPS-induced cellular reactive oxygen species (ROS) production but increases mixed lineage kinase domain-like pseudokinase (MLKL) activation and cell necroptosis. In addition, NLRX1 silencing blocks bafilomycin A1-induced PARP-1 activation. Taken together, for the first time, we demonstrate the role of NLRX1 in protecting microglia from LPS-induced cell death. The underlying protective mechanisms of NLRX1 include upregulating LPS-induced HO-1 expression via Nrf2-dependent p62 expression and downstream Keap1-Nrf2 axis, mediating PARP-1 activation for DNA repair via ROS- and autophagy-independent pathway, and reducing MLKL activation.
- Published
- 2024
- Full Text
- View/download PDF
7. Structural aspects of RimP binding on small ribosomal subunit from Staphylococcus aureus.
- Author
-
Garaeva N, Fatkhullin B, Murzakhanov F, Gafurov M, Golubev A, Bikmullin A, Glazyrin M, Kieffer B, Jenner L, Klochkov V, Aganov A, Rogachev A, Ivankov O, Validov S, Yusupov M, and Usachev K
- Subjects
- RNA, Ribosomal, 16S analysis, RNA, Ribosomal, 16S metabolism, Scattering, Small Angle, Ribosome Subunits, Small, Bacterial chemistry, X-Ray Diffraction, Electron Spin Resonance Spectroscopy, Ribosomal Proteins chemistry, Ribosome Subunits, Small metabolism, Cryoelectron Microscopy, Staphylococcus aureus metabolism, Bacterial Proteins chemistry
- Abstract
Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. Arrangement of lipid vesicles and bicelle-like structures formed in the presence of Aβ(25-35) peptide.
- Author
-
Kurakin S, Badreeva D, Dushanov E, Shutikov A, Efimov S, Timerova A, Mukhametzyanov T, Murugova T, Ivankov O, Mamatkulov K, Arzumanyan G, Klochkov V, and Kučerka N
- Subjects
- Molecular Dynamics Simulation, Phosphatidylcholines, Temperature, Humans, Amyloid beta-Peptides chemistry, Lipid Bilayers chemistry
- Abstract
Our complementary experimental data and molecular dynamics (MD) simulations results reveal the structure of previously observed lipid bicelle-like structures (BLSs) formed in the presence of amyloid-beta peptide Aβ(25-35) below the main phase transition temperature (T
m ) of saturated phosphatidylcholine lipids and small unilamellar vesicles (SUVs) above this temperature. First, we show by using solid-state31 P nuclear magnetic resonance (NMR) spectroscopy that our BLSs being in the lipid gel phase demonstrate magnetic alignment along the magnetic field of NMR spectrometer and undergo a transition to SUVs in the lipid fluid phase when heated through the Tm . Secondly, thanks to the BLS alignment we present their lipid structure. Lipids are found located not only in the flat bilayered part but also around its perimeter, which is corroborated by the results of coarse-grained (CG) MD simulations. Finally, peptides appear to mix randomly with lipids in SUVs while assuming predominantly unordered secondary structures revealed by circular dichroism (CD), Raman spectroscopy, and all-atom MD simulations. Importantly, the former is changing little when the system undergoes morphological transitions between BLSs and SUVs. Our structural results then offer a platform for studying and understanding mechanisms of morphological transformations caused by the disruptive effect of amyloid-beta peptides on the lipid bilayer., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.