1. The mega‐evolution of life with its three memory systems depends on sender–receiver communication and problem‐solving. A narrative review.
- Author
-
De Loof, Arnold
- Subjects
- *
COMMUNICATION , *SOCIOLOGY , *PROGENY tests (Botany) , *PLANT breeding , *VITAL force - Abstract
It should be the ultimate goal of any theory of evolution to delineate the contours of an integrative system to answer the question: How does life (in all its complexity) evolve (which can be called mega‐evolution)? But how to plausibly define 'life'? My answer (1994–2023) is: 'life' sounds like a noun, but denotes an activity, and thus is a verb. Life (L) denotes nothing else than the total sum (∑) of all acts of communication (transfer of information) (C) executed by any type of senders–receivers at all their levels (up to at least 15) of compartmental organization: L = ∑C. The 'communicating compartment' is better suited to serve as the universal unit of structure, function and evolution than the cell, the smallest such unit. By paying as much importance to communication activity as to the Central Dogma of molecular biology, a wealth of new insights unfold. The major ones are as follows. (1) Living compartments have not only a genetic memory (DNA), but also a still enigmatic cognitive and an electrical memory system (and thus a triple memory system). (2) Complex compartments can have up to three types of progeny: genetic descendants/children, pupils/learners and electricians. (3) Of particular importance to adaptation, any act of communication is a problem‐solving act because all messages need to be decoded. Hence through problem‐solving that precedes selection, life itself is the driving force of its own evolution (a very clever but counterintuitive and unexpected logical deduction). Perhaps, this is the 'vital force' philosopher and Nobel laureate (in 1927) Henri Bergson searched for but did not find. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF