1. Searching for Cosmological Collider in the Planck CMB Data
- Author
-
Sohn, Wuhyun, Wang, Dong-Gang, Fergusson, James R., and Shellard, E. P. S.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
In this paper, we present the first comprehensive CMB data analysis of cosmological collider physics. New heavy particles during inflation can leave imprints in the primordial correlators which are observable in today's cosmological surveys. This remarkable detection channel provides an unsurpassed opportunity to probe new physics at extremely high energies. Here we initiate the search for these relic signals in the cosmic microwave background (CMB) data from the Planck legacy release. On the theory side, guided by recent progress from the cosmological bootstrap, we first propose a family of analytic bispectrum templates that incorporate the distinctive signatures of cosmological collider physics. Our consideration includes the oscillatory signals in the squeezed limit, the angular dependence from spinning fields, and several new shapes from nontrivial sound speed effects. On the observational side, we apply the recently developed pipeline, CMB Bispectrum Estimator (CMB-BEST), to efficiently analyze the three-point statistics and search directly for these new templates in the Planck 2018 temperature and polarization data. We report stringent CMB constraints on these new templates. Furthermore, we perform parameter scans to search for the best-fit values with maximum significance. For a benchmark example of collider templates, we find $f_{NL}=-91\pm40$ at the $68\%$ confidence level. After accounting for the look-elsewhere effect, the biggest adjusted significance we get is $1.8\sigma$. In general, we find no significant evidence of cosmological collider signals in the Planck data. However, this innovative analysis demonstrates the potential for discovering new heavy particles during inflation in forthcoming cosmological surveys., Comment: 42 pages, 17 figures; v2: published version with minor revisions and references added
- Published
- 2024
- Full Text
- View/download PDF