1. A genetic association study of circulating coagulation factor VIII and von Willebrand factor levels.
- Author
-
de Vries PS, Reventun P, Brown MR, Heath AS, Huffman JE, Le NQ, Bebo A, Brody JA, Temprano-Sagrera G, Raffield LM, Ozel AB, Thibord F, Jain D, Lewis JP, Rodriguez BAT, Pankratz N, Taylor KD, Polasek O, Chen MH, Yanek LR, Carrasquilla GD, Marioni RE, Kleber ME, Trégouët DA, Yao J, Li-Gao R, Joshi PK, Trompet S, Martinez-Perez A, Ghanbari M, Howard TE, Reiner AP, Arvanitis M, Ryan KA, Bartz TM, Rudan I, Faraday N, Linneberg A, Ekunwe L, Davies G, Delgado GE, Suchon P, Guo X, Rosendaal FR, Klaric L, Noordam R, van Rooij F, Curran JE, Wheeler MM, Osburn WO, O'Connell JR, Boerwinkle E, Beswick A, Psaty BM, Kolcic I, Souto JC, Becker LC, Hansen T, Doyle MF, Harris SE, Moissl AP, Deleuze JF, Rich SS, van Hylckama Vlieg A, Campbell H, Stott DJ, Soria JM, de Maat MPM, Almasy L, Brody LC, Auer PL, Mitchell BD, Ben-Shlomo Y, Fornage M, Hayward C, Mathias RA, Kilpeläinen TO, Lange LA, Cox SR, März W, Morange PE, Rotter JI, Mook-Kanamori DO, Wilson JF, van der Harst P, Jukema JW, Ikram MA, Blangero J, Kooperberg C, Desch KC, Johnson AD, Sabater-Lleal M, Lowenstein CJ, Smith NL, and Morrison AC
- Subjects
- Humans, Polymorphism, Single Nucleotide, Human Umbilical Vein Endothelial Cells metabolism, Mendelian Randomization Analysis, Genome-Wide Association Study, Thrombosis genetics, Thrombosis blood, Genetic Association Studies, Male, Endothelial Cells metabolism, Female, von Willebrand Factor genetics, von Willebrand Factor metabolism, Factor VIII genetics, Factor VIII metabolism, Kininogens, Receptors, Cell Surface, Cell Adhesion Molecules, Lectins, C-Type
- Abstract
Abstract: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.
- Published
- 2024
- Full Text
- View/download PDF