1. A Non-Parametric Box-Cox Approach to Robustifying High-Dimensional Linear Hypothesis Testing
- Author
-
Zhou, He and Zou, Hui
- Subjects
Statistics - Methodology - Abstract
The mainstream theory of hypothesis testing in high-dimensional regression typically assumes the underlying true model is a low-dimensional linear regression model, yet the Box-Cox transformation is a regression technique commonly used to mitigate anomalies like non-additivity and heteroscedasticity. This paper introduces a more flexible framework, the non-parametric Box-Cox model with unspecified transformation, to address model mis-specification in high-dimensional linear hypothesis testing while preserving the interpretation of regression coefficients. Model estimation and computation in high dimensions poses challenges beyond traditional sparse penalization methods. We propose the constrained partial penalized composite probit regression method for sparse estimation and investigate its statistical properties. Additionally, we present a computationally efficient algorithm using augmented Lagrangian and coordinate majorization descent for solving regularization problems with folded concave penalization and linear constraints. For testing linear hypotheses, we propose the partial penalized composite likelihood ratio test, score test and Wald test, and show that their limiting distributions under null and local alternatives follow generalized chi-squared distributions with the same degrees of freedom and noncentral parameter. Extensive simulation studies are conducted to examine the finite sample performance of the proposed tests. Our analysis of supermarket data illustrates potential discrepancies between our testing procedures and standard high-dimensional methods, highlighting the importance of our robustified approach.
- Published
- 2024