1. Slow Mixing of Quantum Gibbs Samplers
- Author
-
Gamarnik, David, Kiani, Bobak T., and Zlokapa, Alexander
- Subjects
Quantum Physics ,Mathematical Physics ,Mathematics - Probability - Abstract
Preparing thermal (Gibbs) states is a common task in physics and computer science. Recent algorithms mimic cooling via system-bath coupling, where the cost is determined by mixing time, akin to classical Metropolis-like algorithms. However, few methods exist to demonstrate slow mixing in quantum systems, unlike the well-established classical tools for systems like the Ising model and constraint satisfaction problems. We present a quantum generalization of these tools through a generic bottleneck lemma that implies slow mixing in quantum systems. This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles and quantified either through Bohr spectrum jumps or operator locality. Using our bottleneck lemma, we establish unconditional lower bounds on the mixing times of Gibbs samplers for several families of Hamiltonians at low temperatures. For classical Hamiltonians with mixing time lower bounds $T_\mathrm{mix} = 2^{\Omega(n^\alpha)}$, we prove that quantum Gibbs samplers also have $T_\mathrm{mix} = 2^{\Omega(n^\alpha)}$. This applies to models like random $K$-SAT instances and spin glasses. For stabilizer Hamiltonians, we provide a concise proof of exponential lower bounds $T_\mathrm{mix} = 2^{\Omega(n)}$ on mixing times of good $n$-qubit stabilizer codes at low constant temperature, improving upon previous bounds of $T_\mathrm{mix} = 2^{\Omega(\sqrt n)}$. Finally, for $H = H_0 + h\sum_i X_i$ with $H_0$ diagonal in $Z$ basis, we show that a linear free energy barrier in $H_0$ leads to $T_\mathrm{mix} = 2^{\Omega(n)}$ for local Gibbs samplers at low temperature and small $h$. Even with sublinear barriers, we use Poisson Feynman-Kac techniques to lift classical bottlenecks to quantum ones establishing an asymptotically tight lower bound $T_\mathrm{mix} = 2^{n^{1/2-o(1)}}$ for the 2D transverse field Ising model.
- Published
- 2024