1. SlVQ15 recruits SlWRKY30IIc to link with jasmonate pathway in regulating tomato defence against root‐knot nematodes.
- Author
-
Huang, Huang, Ma, Xuechun, Sun, Lulu, Wang, Yingying, Ma, Jilin, Hong, Yihan, Zhao, Mingjie, Zhao, Wenchao, Yang, Rui, Song, Susheng, and Wang, Shaohui
- Subjects
- *
SOUTHERN root-knot nematode , *CROP improvement , *PLANT productivity , *AGRICULTURAL pests , *TRANSCRIPTION factors - Abstract
Summary: Tomato is one of the most economically important vegetable crops in the world and has been seriously affected by the devastating agricultural pest root‐knot nematodes (RKNs). Current understanding of tomato resistance to RKNs is quite limited. VQ motif‐containing family proteins are plant‐specific regulators; however, whether and how tomato VQs regulate resistance to RKNs is unknown. Here, we found that SlVQ15 recruited SlWRKY30IIc to coordinately control tomato defence against the RKN Meloidogyne incognita without affecting plant growth and productivity. The jasmonate (JA)‐ZIM domain (JAZ) repressors of the phytohormone JAs signalling associated and interfered with the interaction of SlVQ15 and SlWRKY30IIc. In turn, SlWRKY30IIc bound to SlJAZs promoters and cooperated with SlVQ15 to repress their expression, whereas this inhibitory effect was antagonized by SlJAZ5, forming a feedback regulatory mechanism. Moreover, SlWRKY30IIc expression was directly regulated by SlMYC2, a SlJAZ‐interacting negative regulator of resistance to RKNs. In conclusion, our findings revealed that a regulatory circuit of SlVQ15‐SlWRKY30IIc and the JA pathway fine‐tunes tomato defence against the RKN M. incognita, and provided candidate genes and clues with great potential for crop improvement. [ABSTRACT FROM AUTHOR] more...
- Published
- 2025
- Full Text
- View/download PDF