1. Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing.
- Author
-
Shasha Zhao, HuanwenYan, Qifeng Lin, Xiangnan Feng, He Chen, and Dengyin Zhang
- Subjects
BEES algorithm ,PARTICLE swarm optimization ,HONEYBEES ,CLOUD computing - Abstract
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment. Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios. In this work, the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm (HPSO-EABC) has been proposed, which hybrids our presented Evolutionary Artificial Bee Colony (EABC), and Hierarchical Particle Swarm Optimization (HPSO) algorithm. The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm. Comprehensive testing including evaluations of algorithm convergence speed, resource execution time, load balancing, and operational costs has been done. The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm. Compared with the Particle Swarm Optimization algorithm, the HPSO algorithmnot only improves the global search capability but also effectivelymitigates getting stuck in local optima. As a result, the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover, it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments, effectively reducing execution time and cost, which also is verified by the ablation experimental. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF