1. Enhancing Security and Power Efficiency of Ascon Hardware Implementation with STT-MRAM.
- Author
-
Roussel, Nathan, Potin, Olivier, Di Pendina, Grégory, Dutertre, Jean-Max, and Rigaud, Jean-Baptiste
- Subjects
RANDOM access memory ,MAGNETIC tunnelling ,STATISTICAL power analysis ,NONVOLATILE memory ,INTEGRATED circuits - Abstract
With the outstanding growth of Internet of Things (IoT) devices, security and power efficiency of integrated circuits can no longer be overlooked. Current approved standards for cryptographic algorithms are not suitable for constrained environments. In this context, the National Institute of Standards and Technology (NIST) started a lightweight cryptography (LWC) competition to develop new algorithm standards that can be fit into small devices. In 2023, NIST has decided to standardize the Ascon family for LWC. This algorithm has been designed to be more resilient to side-channel and fault-based analysis. Nonetheless, hardware implementations of Ascon have been broken by multiple statistical fault analysis and power analysis. These attacks have underlined the necessity to develop adapted countermeasures to side-channel and perturbation-based attacks. However, existing countermeasures are power and area consuming. In this article, we propose a new countermeasure for the Ascon cipher that does not significantly increase the area and power consumption. Our architecture relies on the nonvolatile feature of the Magnetic Tunnel Junction (MTJ) that is the single element of the emerging Magnetic Random Access Memories (MRAM). The proposed circuit removes the bias exploited by statistical attacks. In addition, we have duplicated and complemented the permutation of Ascon to enhance the power analysis robustness of the circuit. Besides the security aspect, our circuit can save current manipulated data, ensuring energy saving from 11% to 32.5% in case of power failure. The area overhead, compared to an unprotected circuit, is × 2.43 . [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF