1. Flupyradifurone activates DUM neuron nicotinic acetylcholine receptors and stimulates an increase in intracellular calcium through the ryanodine receptors.
- Author
-
Taha M, Cartereau A, Taillebois E, and Thany SH
- Subjects
- Animals, Patch-Clamp Techniques, Insecticides pharmacology, Receptors, Nicotinic metabolism, Calcium metabolism, Neurons drug effects, Neurons metabolism, Ryanodine Receptor Calcium Release Channel metabolism
- Abstract
Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates, and are considered to be major targets of several insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, to explore what type of nAChRs are involved in flupyradifurone's (FLU) mode of action, and to study the role of calcium release from intracellular stores in this process. Using whole-cell patch-clamp and fura-2-AM calcium imaging techniques, we found that inhibition of IP
3 Rs through application of 2-APB reduced FLU inward currents, but did not affect the intracellular calcium release induced by FLU. In contrast, inhibition of RyRs using ryanodine, led to reduction of intracellular calcium increase following FLU pulse application. These results suggested that FLU inward currents are likely due to a combination of the direct effects of FLU on DUM neuron nAChRs and the subsequent calcium release from RyRs., Competing Interests: Declaration of competing interest None., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF