1. Where does the carbon go? Long-term effects of forest management on the carbon budget of a temperate-forest water-supply watershed.
- Author
-
Foster DE, Duinker PN, Jamieson RC, Keys K, and Steenberg JWN
- Subjects
- Humans, Canada, Forests, Water, Ecosystem, Carbon analysis
- Abstract
While forest management commonly seeks to increase carbon (C) capture and sequestration, in some settings, a high density of C storage may be detrimental to other land uses and ecosystem services. We study a forested, drinking-water-supply watershed to determine the effects of forest management on C storage with the implicit understanding that greater storage of C will lead to increased quantity of carbon exported hydrologically into a source-water reservoir. Using a custom implementation of CBM-CFS3, a Canadian model to simulate C transformations and movement in forested systems, and a custom forest disturbance and management model, we simulate various management scenarios and their C outcomes. The largest forest C pool, mineral soils, is very slow to change and manipulating DOC export through this pool would likely not be feasible within human management timescales. Other pools, in which C has lower residence time and from which C is more readily mobilized, are a more promising area for future research into hydrologic DOC export under varying management regimes. Our findings indicate that management activities can serve to reduce forest C storage, but further research is required to connect these outcomes to hydrologic export., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF