1. Transcription factor networks drive perforin activity in the anti-bacterial immune response of tilapia.
- Author
-
Cheng J, Wang D, Geng M, Zheng Y, Cao Y, Liu S, Zhang J, Yang J, and Wei X
- Subjects
- Animals, Edwardsiella immunology, Edwardsiella physiology, Enterobacteriaceae Infections immunology, Enterobacteriaceae Infections veterinary, Gene Expression Regulation immunology, Adaptive Immunity genetics, Immunity, Innate genetics, Gene Expression Profiling veterinary, Amino Acid Sequence, Phylogeny, Sequence Alignment veterinary, Fish Diseases immunology, Fish Proteins genetics, Fish Proteins immunology, Cichlids immunology, Cichlids genetics, Aeromonas hydrophila physiology, Perforin genetics, Perforin immunology, Gram-Negative Bacterial Infections immunology, Gram-Negative Bacterial Infections veterinary, Transcription Factors genetics, Transcription Factors immunology
- Abstract
Perforin, produced by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), is one of the effectors of cell-mediated cytotoxicity (CMC) in vertebrates, playing a paramount role in killing target cells. However, whether and how perforin is involved in adaptive immune responses in early vertebrates remains unclear. Using Nile tilapia (Oreochromis niloticus) as a model, we investigated the characteristics of perforin in early vertebrates. Oreochromis niloticus perforin (OnPRF) possesses 2 conserved functional domains, membrane attack complex/perforin (MACPF) and protein kinase C conserved region 2 (C2) domains, although they share low amino acid sequence similarity with other homologs. OnPRF was widely expressed in various immune tissues and could respond to lymphocyte activation and T-cell activation in vitro at both the transcriptional and protein levels, indicating that it may be involved in adaptive immune responses. Furthermore, after infection with Edwardsiella piscicida and Aeromonas hydrophila, the mRNA and protein levels of OnPRF were significantly up-regulated within the adaptive immune response period. Additionally, we revealed that many transcription factors were involved in the transcriptional regulation of OnPRF, including p65, c-Fos, c-Jun, STAT1 and STAT4, and there was a synergy among these transcription factors. Overall, these findings demonstrate the involvement of OnPRF in T-cell activation and adaptive immune response in tilapia, thus providing new evidence for comprehending the evolution of immune response in early vertebrates., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF