1. One-dimensional nitrogen-doped carbon frameworks embedded with zinc-cobalt nanoparticles for efficient overall water splitting.
- Author
-
Deng Y, Liu H, Wei X, Ding L, Jiang F, Cao X, Zhou Q, Xiang M, Bai J, and Gu H
- Abstract
Metal-organic frameworks (MOFs)-derived catalysts exhibit highly-efficient hydrogen or oxygen evolution performance on water splitting. However, it is an urgent problem to construct bifunctional electrocatalysts for both hydrogen and oxygen evolution performance. Herein, we adopted Ag nanowires as templates to prepare one-dimensional Ag nanowire@ZIF-8@ZIF-67 precursors (1D AgNW@ZIF-8@ZIF-67). Through pyrolysis, AgNW@ZIF-8@ZIF-67 precursors transformed into nitrogen-doped carbon frameworks (NCF) embedded with zinc-cobalt (ZnCo) nanoparticles on the surface of Ag NWs (denoted as Ag@ZnCo/NCF nanohybrids). The nanohybrids were consisted of Ag NWs with good conductivity and ZnCo/NCF nanohybrids with rich accessible active sites. Benefiting from their large specific surface area, accessible active sites and synergistic effect among components, Ag@ZnCo/NCF nanohybrids exhibit lower overpotentials of 139 mV and 279 mV at the current density of 10 mA cm
-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution, severally. Compared with other catalysts, Ag@ZnCo/NCF nanohybrids possess smaller Tafel slope, indicating their higher catalytic activity. This work provides a new perspective for designing low-cost and highly efficient bifunctional electrocatalysts for overall water splitting., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF