1. MAPK/NF-κB-dependent upregulation of kinin receptors mediates airway hyperreactivity: A new perspective for the treatment.
- Author
-
Zhang, Yaping, Cardell, Lars-Olaf, Edvinsson, Lars, and Xu, Cang-Bao
- Subjects
- *
MITOGEN-activated protein kinases , *KININS , *NF-kappa B , *AIRWAY (Anatomy) , *INFLAMMATION , *PHOSPHOINOSITIDES , *MOLECULAR biology - Abstract
Abstract: Airway hyperreactivity (AHR) is a major feature of asthmatic and inflammatory airways. Cigarette smoke exposure, and bacterial and viral infections are well-known environmental risk factors for AHR, but knowledge about the underlying molecular mechanisms on how these risk factors lead to the development of AHR is limited. Activation of intracellular mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) and their related signal pathways including protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and protein kinase A (PKA) signaling pathways may result in airway kinin receptor upregulation, which is suggested to play an important role in the development of AHR. Environmental risk factors trigger the production of pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α) and interleukins (ILs) that activate intracellular MAPK- and NF-κB-dependent inflammatory pathways, which subsequently lead to AHR via kinin receptor upregulation. Blockage of intracellular MAPK/NF-κB signaling prevents kinin B1 and B2 receptor expression in the airways, resulting in a decrease in the response to bradykinin (kinin B2 receptor agonist) and des-Arg9-bradykinin (kinin B1 receptor agonist). This suggests that MAPK- and NF-κB-dependent kinin receptor upregulation can provide a novel option for treatment of AHR in asthmatic as well as in other inflammatory airway diseases. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF