1. Heterozygous loss of Engrailed-1 and α-synucleinopathy (En1/SYN): A dual-hit preclinical mouse model of Parkinson's disease, analyzed with artificial intelligence.
- Author
-
Stetzik, Lucas, Mercado, Gabriela, Steiner, Jennifer A., Lindquist, Allison, Gilliland, Carla, Schulz, Emily, Meyerdirk, Lindsay, Smith, Lindsey, Molina, Jeremy, and Moore, Darren J.
- Subjects
- *
PARKINSON'S disease , *CINGULATE cortex , *SUBSTANTIA nigra , *MOTOR cortex , *ARTIFICIAL intelligence - Abstract
In this study, we develop and validate a new Parkinson's disease (PD) mouse model that can be used to better understand how the disease progresses and to test the effects of new, potentially disease-modifying, PD therapies. Our central hypothesis is that mitochondrial dysfunction intercalates with misfolded α-synuclein (α-syn) accumulation in a vicious cycle, leading to the loss of nigral neurons. Our hypothesis builds on the concept that PD involves multiple molecular insults, including mitochondrial dysfunction and aberrant α-syn handling. We predicted that mitochondrial deficits, due to heterozygous loss of Engrailed-1 (En1 +/−), combined with bilateral injections of pathogenic α-syn fibrils (PFFs), will act to generate a highly relevant PD model – the En1/SYN model. Here, En1 +/− mice received bilateral intrastriatal stereotaxic injections of either PBS or α-syn fibrils and were analyzed using automated behavioral tests and deep learning-assisted histological analysis at 2, 4, and 6 months post-injection. We observed significant and progressive Lewy body-like inclusion pathology in the amygdala, motor cortex, and cingulate cortex, as well as the loss of tyrosine hydroxylase-positive (TH+) cells in the substantia nigra. The En1/SYN model also exhibited significant motor impairments at 6 months post-injection, which were however not exacerbated as we had expected. Still, this model has a comprehensive number of PD-like phenotypes and is therefore superior when compared to the α-syn PFF or En1+/− models alone. • Automated behavioral tests and deep learning-assisted histological analyses to assess disease progression in En1/SYN mice. • Demonstrated the impact of the En1/SYN model on motor impairment and α-synucleinopathy progression. • Detailed analysis of motor and cognitive impairments in En1/SYN model with insights into potential treatment options. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF