1. New insights into the neuroanatomical distribution and phylogeny of opioids and POMC-derived peptides in fish
- Author
-
Vallarino, Mauro, d’Amora, Marta, and Dores, Robert M.
- Subjects
- *
PHYLOGENY , *OPIOIDS , *PEPTIDES , *DYNORPHINS , *NEURONS , *IMMUNE serums - Abstract
Abstract: This review re-evaluates the use of immunological probes to map enkephalinergic, dynorphinergic, and endorphinergic circuits in the CNS of lobe-finned fishes, ray-finned fishes, and cartilaginous fishes in light of the characterization of proenkephalin, prodynorphin, and POMC sequences from representatives of these groups of fish over the past 20years. The use of α-MSH specific antisera is a reliable method for detecting POMC immunopositive cell bodies and fibers. Since α-MSH and β-endorphin are co-localized in the same neurons, these studies also reveal the distribution of endorphinergic networks. Met-enkephalin specific antisera can be used to detect enkephalinergic circuits in the CNS of gnathostomes because of the ubiquitous presence of this pentapeptide in the proenkephalin sequences of gnathostomes. However, the use of leu-enkephalin specific antisera to detect enkephalinergic networks is more problematic. While this immunological probe is appropriate for analyzing enkephalinergic networks in mammals and perhaps teleosts, for the lungfishes and cartilaginous fishes this probe is more likely able to detect dynorphinergic circuits. In this regard, there is a need to re-examine dynorphinergic networks in non-mammalian gnathostomes by using species specific antisera directed against dynorphin end-products. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF