Since flash memory has many attractive characteristics such as high performance, non-volatility, low power consumption and shock resistance, it has been widely used as storage media in the embedded and computer system environments. In the case of reliability, however, there are many shortcomings in flash memory: potentially high I/O latency due to erase-before-write and poor durability due to limited erase cycles. To overcome these problems, a RAID technique borrowed from storage technology based on hard disks is employed. In the RAID technology, multi-bit burst failures in the page, block or device are easily detected and corrected so that the reliability can be significantly enhanced. However the existing RAID-5 scheme for the flash-based storage has delayed response time for parity updating. To overcome this problem, we propose a novel approach using a RAID technique in flash storage, called Flash-aware Redundancy Array. In this approach, parity updates are postponed so that they are not included in the critical path of read and write operations. Instead, they are scheduled for when the device becomes idle. For example, the proposed scheme shows a 19% improvement in the average write response time, compared to other approaches.