1. Probing acoustics of liquid foams by optical diffusive wave spectroscopy
- Author
-
Benjamin Dollet, Juliette Pierre, Reine-Marie Guillermic, Arnaud Saint-Jalmes, Caitlin S. Sample, Jéro^me Crassous, Marion Erpelding, Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), and Saint-Jalmes, Arnaud
- Subjects
Physics::Computational Physics ,010302 applied physics ,Physics::General Physics ,Materials science ,Acoustics and Ultrasonics ,Sound transmission class ,Bubble ,Acoustics ,Acoustic wave ,01 natural sciences ,Light scattering ,[PHYS.COND.CM-SCM] Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Condensed Matter::Soft Condensed Matter ,010309 optics ,Shear (sheet metal) ,Amplitude ,Arts and Humanities (miscellaneous) ,Rheology ,Computer Science::Sound ,0103 physical sciences ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Displacement (fluid) - Abstract
Sound propagation through liquid foams, which are dispersions of gas bubbles in a continuous liquid phase, is not well known yet. To characterize foam acoustics at the local scale, we have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. We quantify these displacements by using a technique based on optical diffusive wave spectroscopy, that we specially developped to resolve tiny deformations in materials. Bubble displacements induce a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are interpreted using a light diffusion model. It allows us to unravel a nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.
- Published
- 2013
- Full Text
- View/download PDF