1. Strong Coupling between Localized Surface Plasmons and Molecules by Coupled Cluster Theory
- Author
-
Silvio Pipolo, Stefano Corni, Tommaso Giovannini, Tor S. Haugland, Jacopo Fregoni, Henrik Koch, Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, Istituto Nanoscienze [Modena] [CNR NANO], Dipartimento di Scienze Chimiche [Padova], Norwegian University of Science and Technology [Trondheim] [NTNU], Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181, Scuola Normale Superiore di Pisa [SNS], Università degli Studi di Padova = University of Padua (Unipd), Istituto Nanoscienze [Modena] (CNR NANO), Norwegian University of Science and Technology [Trondheim] (NTNU), Norwegian University of Science and Technology (NTNU), Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Scuola Normale Superiore di Pisa (SNS), Fregoni, J., Haugland, T. S., Pipolo, S., Giovannini, T., Koch, H., and Corni, S.
- Subjects
Electromagnetic field ,Plexcitons ,Nanoplasmonics ,Plexciton ,Letter ,FOS: Physical sciences ,Physics::Optics ,Bioengineering ,02 engineering and technology ,Polaritonic Chemistry ,Cavity-QED ,Quantum Nanoparticles ,Quantum Chemistry ,Quantum coupling ,01 natural sciences ,Molecular physics ,Nanoplasmonic ,Quantum state ,Physics - Chemical Physics ,0103 physical sciences ,Polariton ,Polaritonics ,General Materials Science ,010306 general physics ,Plasmon ,Settore CHIM/02 - Chimica Fisica ,Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter::Other ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,3. Good health ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Coupled cluster ,0210 nano-technology ,Physics - Optics ,Localized surface plasmon ,Optics (physics.optics) - Abstract
Plasmonic nanocavities enable the confinement of molecules and electromagnetic fields within nano-metric volumes. As a consequence, the molecules experience a remarkably strong interaction with the electromagnetic field, to such an extent that the quantum states of the system become hybrids between light and matter: polaritons. Here we present a non-perturbative method to simulate the emerging properties of such polaritons: it combines a high-level quantum chemical description of the molecule with a quantized description of the localized surface plasmons in the nanocavity. We apply the method to molecules of realistic complexity in a typical plasmonic nanocavity, featuring also a subnanometric asperity (picocavity). Our results disclose the effects of the mutual polarization and correlation of plasmons and molecular excitations, disregarded so far. They also quantify to what extent the molecular charge density can be manipulated by nanocavities, and stand as benchmarks to guide the development of methods for molecular polaritonics., Comment: 13 Pages Main text, 4 Figures and 11 pages Supporting Information
- Published
- 2021